
Mapping the Depths:

Visualising Mussel Bed Data

with SeaVis

Victor Emil Søe Rasmussen, Thomas Edwin O’Neill,

Janus Mohr Hovgaard, Emil Stald Pedersen, Ivan Mezinov

4th semester project

Subject Module Project in Computer Science, Spring 2023

Supervisor: Jialiang Li

September 10, 2023

Figure 1: AI generated image of mussels

I

Abstract

SeaVis is a company that uses underwater drones to photograph the seafloor, collecting valuable

data on the location and density of mussels. Unfortunately, they lack an effective way of visualising

and communicating this data to their users, limiting the ability of mussel gatherers to optimise their

harvest. This project aims to provide SeaVis with a user-friendly mapping client that displays their

data on the location and density of mussels on the seafloor, as well as a means to convert their raw

data into a form which can be readily displayed in the TimeZero software package. The mapping

client includes features such as data security and better data management and representation, helping

users optimise their harvest and reduce the time and energy required to gather mussels.

II

Contents

1 Introduction 1

1.1 SeaVis . 1

1.2 Mussels . 2

1.3 Drawbacks of Existing Solutions . 3

1.4 Requirements From SeaVis . 3

1.5 Our Requirements . 3

1.6 Summary of Content . 4

2 KML Creator 5

2.1 Spatial Interpolation . 6

2.2 Polygonisation . 8

2.3 Simplification and Polygon Unification . 8

2.4 Model-View-Presenter . 9

2.5 Model: from CSV to KML . 11

2.6 Presenter . 14

2.7 View . 14

2.8 Extra Features . 18

3 Mapping Client 21

3.1 Interface . 24

3.2 Authentication . 26

3.3 File Fetching . 29

4 Tools and Third-Party Packages 31

4.1 KML Creator . 31

4.2 Mapping Client . 33

4.3 TimeZero . 37

5 Testing 38

5.1 TimeZero Mapping Client . 38

5.2 KML Creator . 38

5.3 Standalone Mapping Client . 42

5.4 Product Testing . 44

5.5 Challenges of Using Fabricated Data . 44

6 Project Development and Discussion 46

6.1 Interpolation Algorithm . 46

III

6.2 Electron . 47

6.3 Difficulties of Using PyInstaller . 48

6.4 Third-party Tools and Libraries . 49

6.5 Dual Applications: Data Formatting and Mapping Client 49

6.6 Workload Distribution and Organisation . 50

6.7 Requirements . 50

6.8 Future Directions . 50

7 Conclusion 52

8 Appendix 57

8.1 Nomenclature . 57

8.2 PyInstaller Command . 58

8.3 KML Creator File Structure . 59

8.4 Sample KML . 62

8.5 Mapping Client File Structure . 63

8.6 Interview with Bjørn from SeaVis . 66

8.7 Code: KML Creator . 77

8.8 Code: Mapping Client . 146

8.9 Code: Lambda Functions for Authentication . 174

8.10 Code: Lambda Function for generating presigned URLs 184

IV

1 Introduction

This project aims to provide SeaVis with a way of transforming their data into a format that is

suitable for mapping, as well as a way to display it. The data transformation process includes

interpolation of data points into mapped fields. A primary requirement from SeaVis states that the

data has to be compatible with the software package, TimeZero, which is Geographic Information

System (GIS) software used by their costumers. However, due to our desire to create a holistic

solution and introduce a potential alternative to TimeZero, a decision was made to create two

standalone applications. Such solution provides an implementation where the first application does

the calculation work, while another securely distributes and showcases this output to the end-user.

The first application, named KML Creator (see Section 2), is responsible for processing the data

into a KML file and thus fulfilling the request from SeaVis. It also allows SeaVis to configure which

data gets processed and how it gets processed.

The second application referred to as the ”Mapping Client” includes features and flexibility with

displayed data that could be more convenient and user-friendly compared to ones represented in

TimeZero. Such features include the ability to distribute data layer security, as well as better data

management and representation. Overall, by providing a visual representation of the location and

density of mussels on the seafloor, it can help users optimise their harvest and reduce the time and

energy required to gather mussels.

The following working questions will be used as a primary focus of this project: How can we

provide SeaVis the means to convert their raw data into a form that can be displayed

in the TimeZero software package? How can we create a user-friendly mapping client

which is capable of displaying SeaVis’ data on the location and density of mussels on

the seafloor and can be accessed securely through a login service?

1.1 SeaVis

SeaVis is a start-up that uses underwater drones to photograph the seafloor. There are a number of

applications for which this technology can be used. One of these is helping mussel gatherers locate

mussel beds, which can help the mussel gatherers save time and energy (both diesel and human

energy), as well as minimise the damage on the seabed habitats. During our work process, we have

been in contact with Bjørn Holm, who is the development engineer for SeaVis. We have held a

number of meetings with Bjørn throughout the development process of the KML creator, to refine

the requirements and get feedback on the process, as well as obtaining some information regarding

SeaVis. When speaking to Bjørn regarding the need for such an application, he said:

1

“The fishermen are doing trades, and there’s a growing market for protein, and the mussels and

starfish are really rich in protein. The trawlers destroy the habitats actually. So what we want to do

is, that we want to limit the amount of the area that they scrape and we want to help them catch

them at the right time” [1]

When fully established, SeaVis plans on creating data visualisations of all relevant areas around

Denmark, by capturing images from their underwater drones, where machine learning algorithms

transform them into numerical data (GPS coordinates, oxygen level, mussel size, density etc.). In

order to provide their data as a consumable product, and this is how they plan to execute that

strategy: “So the plan is that we make the drone and then we take some pictures of the sea floor,

and then we have a machine learning algorithm to map the biomass on the pictures” [1]

The current task for SeaVis is to create an optimal way of displaying their raw data as a visualisation

in TimeZero for their clients. SeaVis is currently working with one client in Limfjorden, Denmark,

but the vision for the company, is to expand to the rest of Denmark in 2024, and to go international

by 2025. [1]

1.2 Mussels

Mussels cluster on rocky substrates or ropes, creating dense beds that are ecologically valuable for

habitat and food [2]. Mussels are capable of movement and are harvested using various methods,

such as on-bottom or rope culture. On-bottom culture is traditional but labour intensive, while the

rope culture is more efficient but requires more investment [3]. Mussels can also act as bio-indicators

of water quality, accumulating pollutants and contaminants that could affect human health and the

ecosystem. They are capable of monitoring nutrient levels, such as nitrogen and phosphorus, which

contribute to harmful algal blooms. By carefully monitoring mussel populations, researchers and

environmental managers can gain insights into human-nature interactions.

Gathering mussels can be a time-consuming and expensive process, especially as the mussel beds

are difficult to locate. With the solution we have created, SeaVis can help mussel gatherers better

locate mussels and collect valuable data on the location and density of mussels on the seafloor, but

lack an effective way to visualise and communicate this data to their users. This limits the ability of

mussel gatherers to optimise their harvest, potentially leading to inefficient use of time and energy.

2

1.3 Drawbacks of Existing Solutions

This project follows on from a previous semester project, which attempted to solve SeaVis’ problem.

This earlier project (referred to as ”Mussels in Limfjord”, henceforth) [4], implemented a map-based

data visualisation of mussel density, encased in a graphic user interface (GUI). Although the GUI

allowed the user to filter data into categories, the software implementation as a whole had a number

of shortcomings. For instance, the data visualisation itself was not visually appealing and gave the

viewer a distorted view of the raw data. As far as solving SeaVis’ issue, Mussels in Limfjord fell

short.

1.4 Requirements From SeaVis

The starting and primary goal of this project has been to follow and satisfy the main requirement

outlined by SeaVis. It includes the following:

Make a programme that is capable of converting a CSV-formatted data-set obtained from SeaVis

into a file that is compatible with TimeZero – an application used to display the data for potential

users.

As the project developed SeaVis provided some suggestions regarding certain aspects of the pro-

gramme:

• An output file can be in the KML format, since it is one of the most convenient formats that

could be imported into TimeZero

• The inclusion of forecasting what plotted data would look like after a certain amount of mussel

growth.

• The option to display the data on a 3D map of the ocean floor.

During our collaboration with SeaVis, we had meetings with Bjørn to gather useful feedback and

suggestions for improving our final product.

1.5 Our Requirements

Throughout the course of this project’s development, it was decided to introduce additional require-

ments to expand the scope of the project. This was done both to satisfy the requirements of the

course and to give us more of a challenge and an opportunity to learn.

Our primary requirement was to create a holistic solution that would ensure that raw data can be

formatted, distributed securely, and displayed without the need to use TimeZero or other third-party

tools.

3

More specifically, we outline the following requirements for the data conversion process:

• Implement the technique that would allow us to comprise discrete geographical data points

during the data processing stage.

• Make an executable (.exe) formatted application compatible with Windows and Linux opera-

tion systems

• Make sure that the raw data can be customised and user’s input can be saved

• Introduce various user-friendly GUI components

For the standalone mapping client the following requirements were introduced:

• Make a separate mapping client that would be able to display the processed data to provide

an alternative for TimeZero.

• Within the mapping client implement user-friendly GUI

• Include user validation and data security features for the mapping client, to protect the intel-

lectual property contained in the generated KML files.

During the development of the project, intermediate goals and requirements were constantly intro-

duced and updated (see Section 6).

1.6 Summary of Content

Section 2 provides an in-depth analysis of the KML Creator application, exploring its features such

as spatial interpolation, polygonisation, the MVP design pattern, and the Model’s role in CSV to

KML conversion. In Section 3, the focus is on the mapping client, diving into its interface, main

routes, the authentication system with user registration, login, and token authentication using JSON

Web Tokens, as well as the secure retrieval of KML files from a private S3 bucket. Section 4 offers

an overview of the tools and third-party packages used in the project, including geospatial data ma-

nipulation libraries, spatial operation tools, and visualisation packages. Moving on to Section 5, it

covers various aspects of testing, user perspective testing, compatibility and functionality testing of

the KML Creator and mapping client, parameter testing, security testing, and unit and integration

testing. Section 6 sheds light on the project’s development process, discussing challenges faced, de-

cisions made, workload distribution, and future development possibilities, while also acknowledging

the reliance on third-party tools and libraries. The report concludes in Section 7 by highlighting the

successful creation of two applications that both meets SeaVis’ requirements as well as our own.

4

2 KML Creator

The KML Creator is the first of the two apps we have created. It is used to transform the data

collected by SeaVis into a more suitable format for mapping.

The KML Creator consists of approximately 2500 lines of code 1, written in Python2. The code

itself has the following features:

• The code is well commented and each method and class includes a doc string.

• Extensive type annotations are used. Although type annotations are not essential in a dynam-

ically typed language like Python, we believe that there are valuable advantages to using type

annotations, namely increased readability and better IDE support

• We have used the Pre-commit library [5] and a number of pre-commit hooks to ensure stan-

dardised formatting, allowing for easier-to-read code and easy development through minimising

the size of GitHub diffs.

• Logging is used throughout the codebase to ensure easier bug and error detection.

• File paths are captured using Path objects form Python’s pathlib module allowing the pro-

gramme to run on Windows, Mac, or Linux.

• Rather than being hard coded throughout the codebase, capitalised global variables (e.g.

”CSV PATH”, ”TEST PATH”) are defined in config.py, allowing for standardisation and eas-

ier configuration.

The requirements that we used for the development of this app were that:

• it would be able to import CSV data

• there would be a way of splitting data into separate bins, with separate map layers relating to

each bin. Each bin should have a lower and upper bound. There should be a way for a SeaVis

user to configure these bins.

• it would be able to take the discrete points found in the CSV file and interpolate values for

the areas in between each point, creating mapped fields.

• it would be able to create output that could be imported into TimeZero and our mapping

client.

There are a few theoretical concepts that need to be explained, in order to fully grasp this process,

we have devised to fulfil the requirements above. These concepts are explained in Section 2.1 through

Section 2.4.

1Maximum line length of 88 characters. Including comments.
2The GitHub repository can be found at the following link: http://github.com/figgeous/kml-creator.

5

2.1 Spatial Interpolation

An interpolation algorithm is a mathematical algorithm used to estimate or calculate values between

two known data points. In other words, it is a method used to approximate unknown values within

a range of known values.

Figure 2: Illustration of the moving average algorithm [6]

In the figures above, the observed values are represented by the blue dots, and the unobserved

values are represented by the red dots with the question mark. The search ellipse is represented

by the black dotted ellipse, which include the number of observed values we want to include in the

calculation. We then place the search ellipse over the observed values, with the unobserved value at

the centre. We then calculate the average of the values within the window and use that average as

our estimate for the unobserved value.

Figure 3: Illustration of the moving average algorithm [6]

In the second illustration of Figure 2, the search ellipse only contains one observed value, which has

the value 8. Therefore, the value of the unobserved value also becomes 8. The same concept can

be seen in the two illustrations above, in Figure 3. Here the search ellipse contains both 11 and 1,

which averages to 6. Therefore, the unobserved value becomes 6. This process is then repeated for

all unobserved values. Depending on the size of the data-set and the settings of one’s algorithm, the

calculations can take a very long time, as there can be millions or even billions of unobserved values.

6

Figure 4: An illustration of our own fabricated data-set

There are different types of interpolation algorithms, including Linear interpolation, Inverse Distance

interpolation, Moving Average interpolation, and Nearest Neighbour interpolation. In this project

the moving average interpolation algorithm was used. This algorithm works by taking a search

ellipse of observed values and averaging them to estimate the value the unobserved location. The

size of the search ellipse can vary depending on the specific application and the desired level of

accuracy.

As we are using GDAL for our project, the moving average algorithm is easy to implement into our

code. However, using algorithms like moving average, has its limitations. For example, it assumes

that the variable being interpolated varies smoothly across the space, which may not always be the

case. Therefore it can also result in over- or under- smoothing, leading to inaccurate estimates.

7

2.2 Polygonisation

Polygonisation is a key step in converting GeoTIFF files back into vector data using GDAL. This

process involves transforming raster data into polygonal representations for analysis and visualisa-

tion.

Figure 5: Illustration a GeoTIFF file before poly-
gonisation

Figure 6: Illustration of a KML file made from
the previous GeoTIFF file.

The GDAL polygonize utility [7] utilises various algorithms to convert raster data into vector poly-

gons. While the specific algorithm used may vary depending on the GDAL version and the underlying

libraries, the utility effectively identifies distinct regions within the raster and generates polygons to

represent them. By analysing the raster data, the polygonize utility groups pixels with similar values

or attributes into separate regions. These regions are then represented by polygons that describe

their boundaries. The resulting vector polygons accurately capture the features present within the

GeoTIFF file. The polygonisation process provides a convenient and efficient means of converting

raster data into vector polygons. This vector data can then be further processed and analysed,

enabling spatial analysis, measurements, and the generation of high-quality maps or visualisations

within the mapping client.

2.3 Simplification and Polygon Unification

The simplify() method is part of the Shapely library (see Section 6). It is mainly used to get

rid of points that may be unnecessary for representing the object and return a simplified ver-

sion of the geometry object. The usual representation would be: object.simplify(tolerance, pre-

serve topology=True), where tolerance is the value stating the distance of the original geometry,

8

hence all points would be within this distance, and preserve topology that ensures that a slower al-

gorithm is used to preserve topology. If the condition is set to false, the Douglas-Peucker algorithm

is used, which is faster than the default one [8].

Figure 7: Simplification of a nearly circular polygon using a tolerance of 0.2 (left) and 0.5 (right) [8]

The other relevant segment of the Shapely library is the ”unary union” function. It is used to perform

a union operation between two separate polygons. The function ignores None values, allowing the

intersecting polygons to be merged into one polygon by combining common points and dissolving

specific edges [9].

2.4 Model-View-Presenter

The KML Creator uses a Model-View-Presenter (MVP) design pattern, which separates logic into

three distinct components [10]:

• The Model contains the data and business logic required by the View, although it is unaware of

both the Presenter and the view. In the KML Creator the Model comprises three classes (Bin,

Preper, Runner), which are capable of the main objective of the app: to convert a suitably

formatted CSV file into a TimeZero-compatible KML file.

• The View, with its simple design, represents the presentation layer and does not contain control

logic. It makes requests to the Presenter, from which it is updated. The View is aware of the

Presenter, but is unaware of the Model. In the KML Creator, the user interacts most directly

with the View class, which calls methods of the Presenter class, which in turn calls methods

of the View class, updating its state.

• The Presenter mediates between the Model and the Presenter, linking the two separate com-

ponents. In the KML Creator, the Presenter receives user input from the View, utilises the

Model and updates the View through calling its methods.

9

An important feature of MVP is that there is a clear separation of concerns between the three

distinct parts. That is, each of the three parts has its own distinct role and duty. This leads to

numerous advantages and disadvantages: Advantages:

• it is easier to conduct unit tests on separate components, which are independent of one another.

• detection and location of bugs and errors is more straightforward, as they can be localised to

a specific component.

• the app is more scalable and easier to maintain, as each part of three components can be

modified and developed independently of the rest.

• code is more readable and easier to understand when there is clear separation of concerns.

Disadvantages:

• separating concerns into three components could add complexity, which you may want to avoid

in smaller projects

• additional code often needs to be written in order to implement MVP, leading to an increase

in code volume, which can have undesirable effects on maintainability.

• getting familiar with typical implementations of MVP involves a learning curve for developers

who were previously unaware of it.

• there is a potential for over-engineering through excessive abstraction, leading to unnecessary

complexity and also having a negative effect on maintainability.

Model-View-Controller (MVC) is another design pattern we considered using. The Controller of the

MVC is similar to the Presenter of MVP, with the main difference being that in MVC the View is able

to communicate directly with the Model. This makes the three components more interdependent

and intertwined, which means that MVC does not enjoy the same advantages as MVP with regard

to the clear separation of concerns. In our application there is no added benefit to the View being

able to communicate with the Model, and thus we opted for MVP.

10

2.5 Model: from CSV to KML

Having explained some of the foundational theoretical concepts important to the KML Creator, we

now explore the work flow the Model uses to convert CSV files into KML files. A sample KML can

be found in Section 8.4.

Figure 8: The six-step process to convert CSV to KML. Relevant libraries are included.

Figure 8 shows this six-step process. These steps are carried out by the Model’s three classes: Bin,

Preper, Runner. The steps will be described by exploring the capacities of each of these classes.

Figure 9: Class diagrams of the Bin, Preper and Runner classes. Here ”gp” refers to Geopandas.

11

Bin Bin is a Python data class, which acts as simple data container for the user-configured bins.

Each bin represents a single layer generated by the Model. The most import attributes of the Bin

are the lower and upper bound, which specify the boundaries for values included in the eventual

map layer, captured by a single KML file. Its other attributes include: column name, description,

colour, opacity, etc.3. The following code shows sample input for the initialisation of a Bin object:

Bin(

enum=1,

column="Blue Mussel Density",

description="The density of Blue Mussels between 20 and 40",

lower=20,

upper=40,

colour="3B9C17",

opacity=50,

),

The map layer generated from this bin will be semi-transparent (opacity 50), green (hex colour

”3B9C17”) and show Blue Mussel density with values greater and equal to 20 and lesser and equal

to 40.

During the conversion from CSV to KML, the bins are first populated by user input, then passed

to the Preper, which updates the Bins’ attributes before the bins are passed to the Runner. The

Runner also updates the Bins’ attributes for its own internal reasons. Most of these updates involve

setting file paths for the various saved files created, allowing them to be later located and used.

Another attribute of Bin is ’ignore’, which is set to true when an empty data-set is created by any

of the components. This signifies an empty Bin (no values between the lower and upper bounds)

and the Bin is ignored for the remainder of processing.

Preper The Preper is responsible for converting the data imported from the user-specified CSV file

into a format that is more amenable to geospatial computations. This class imports the data from the

user-specified CSV file, converts it to a GeoDataFrame (see Section 4.1.1) and saves it to the hard-

disk as a compressed Shapefile. It then splits the data-set into separate GeoDataFrames, reflecting

each user-configurable bin, containing data between (and including) the Bin’s two bounds. These ad-

ditional GeoDataFrames are also saved to disk, with their names set as the Bin’s bin shp file name

attribute. The Preper computes the geographical dimensions of the data-set, for later use by the

Runner.

3For a full list of attributes, see the code in Section 8.7

12

Looking at Figure 9, the Preper has two private methods 4: csv to shp converts the specified CSV

file into a Shapefile and get geo df dimensions computes the geographic extents of the data-set.

The crate shp for each bin method takes the Shapefile created by csv to shp and creates separate

Shapefiles pertaining to each Bin, containing a value within the Bin’s lower and upper bound. The

delete shp file method is called at the end of the main process to delete the Shapefiles generated by

create shp for each bin.

Both the Preper and the runner have a print to view method, which is used by each class as well as

the Model classes, in order to print text to the View’s console window.

Runner The Runner takes the Shapefiles, prepared by the Preper, and performs four operations

on them: interpolation, polygonisation, unison of overlapping polygons and creation of KML files.

Each of these operations is carried out on each Bin object, taking the user-specified attributes

of the bin into account. As described in Section 2.1, spatial interpolation is a technique used to

estimate values for locations where data is not available. In this case, interpolation fills in the spatial

areas between each given point for which we have no data. The interpolation process produces a

GeoTIFF file. The next step, polygonisation, involves converting raster data (GeoTIFF) to vector

data, creating an array of geometrical objects (polygons). Using the process detailed in Section 2.2

and 2.3, overlapping polygons are simplified and united and can be used to create our final product:

the KML file. KML files are easily imported into Google Maps and TimeZero.

Looking at Figure 9, the Runner has methods for running the main process:

• run interpolation for each bin

• run polygonize for each bin

• create kml for each bin

All three of there method can be called with the simple run all method. When the main process is

completed, the delete files method is called to delete the accumulated Shapefile and TIFF files. The

delete files method calls the private delete file method to delete individual files.

4Although Python does not have a strict access control mechanism, we use the convention of affixing an underscore
to attributes and methods which are considered private

13

2.6 Presenter

The Presenter mediates between the View and the Model and controls the flow of logic in the

application. The three classes of the Model are imported into the Controller and their various

method called during the main process.

Figure 10: Class Diagram of the Presenter class

The Presenter has a method for saving the View’s state to a JSON file and another for loading the

same state. The clear temp files method clears temporary files which may have been left behind in a

previous running of the application. The get target columns and default values method fetches data

from the user-specified data-set, in order to populate the View table’s rows with data (target columns

and min/max values for the lower and upper bounds). Using threading, the initialize and run process

starts a thread in which the run process is called. The run process method calls and initialises the

Model classes and calls the method in order to convert a given CSV file into a KML file.

2.7 View

The view is responsible for the graphic user interface (GUI) and does not contain control logic itself.

The user interacts with the View, which makes requests to the Presenter, updating the state of the

View. The GUI can be seen in Figures 11 and 12.

14

Figure 11: Screenshot of KML Creator with four bins entered. Before processing.

Figure 12: Screenshot of KML Creator with four bins entered. After processing.

As the View makes use of the tkinter library, the Widget object is the main component class. The

Widget is the parent class for both the Frames that house the various buttons and entry objects, as

well as many of the entry objects themselves. The main class in View is the KmlCreatorView class,

15

which inherits from Tk, which is tkinter’s main toplevel widget, representing the main window of an

application. The main window is split in five regions, which comprise of tkinter Frame objects, spa-

tially stacked upon one another: Header, ButtonFrame, TableFrame, SettingsFrame, ConsoleFrame.

These Frame objects have their own methods for handling their various buttons and entries.

Figure 13: Class Diagram of the KmlCreatorGui, TableFrame and TableRow. Here ”tk” refers to
tkinter. Only a selection of the View’s classes are shown, as the ones that are not shown as fairly
simple and do not require a lot of explaination.

KmlCreatorGui

The KmlCreatorGui, as shown in Figure 13, is the main class for the view. It contains meth-

ods for creating the View’s various elements (create table and accessories), asking for user input

(ask user file directory and ask user file path). There are various methods that get and set data in

the various frames: get rows, get csv file path, set csv file path, set target columns, set saved rows,

set col min max values and set settings. The print to console method is used by the Presenter (and,

indirectly, the Model) to output text to the View’s console and the on close method contains the

code run when the programme is exited. When a user clicks the View’s ”Submit” button, the sub-

mit method is run, creating a Submit instance. Upon initialising, the console box is cleared, the

”Submit” button disabled, the user is asked to select a save directory, data is collected from the all

the View’s entry widgets and passed to the Presenter’s initialize and run process method.

16

Header Contains the button and label for loading a CSV file. When the button is clicked a file

dialog opens, asking the user to locate a CSV file. The class calls the Presenter’s load gui state

method is called with the CSV file path as an argument. The presenter loads the CSV file and

updates the status of the View by calling the relevant View methods.

ButtonFrame A simple method-less class containing the ”Select All”, ”Deselect All”, ”Add Row”,

”Remove Row” and ”Submit” buttons.

TableFrame A Frame which contains the table headers and rows. Each row in represented by an

instance of TableRow class. Its class diagram is found in Figure 13.

The TableFrame class has methods for creating table headers, the table’s scrollbars and the select all

method is used to select or unselect all rows. Rows are added and removed with add row and

remove rows and update scrollregion is used to update the scroll bars with the additional or removal

or rows. Adding rows involves creating a new TableRow object, whereas removing rows involves

destroying the entries associated with a TableRow instance and then redefining the rows attribute.

The get rows method iterates through the rows attribute and calls the get row data method on each

TableRow object. This is used by the Presenter to collect user-input prior to processing from CSV

to KML. The get rows method is also used upon closing the programme, when the state is saved to

disk.

TableFrame: TableRow The TableRow represents a single row in the table. Its class diagram in

Figure 13 The TableRow class has methods for creating and destroying entries, which are the cells

that populate each row. The entries themselves are of varying type, some of which are inbuilt tkinter

classes (Label, Entry), and others are classes we have defined (CheckbuttonWithVar, ColourEntry,

LowerAndUpperBoundEntry). These entries are placed onto their own respective position in the GUI

using the make canvas window method. The is selected method returns boolean value indicating

whether the checkbox for a given row is selected or not and contains empty entry returns a boolean

value indicating whether all the entries of a given row are filled. When submitting user configuration

for the processing of CSV to KML, these two methods allow the inclusion of selected rows and can

ensure that these rows are filled with data.

SettingsFrame A simple class that contains the following settings

17

Setting name Description
Name Allows user to add their own text prefix to the output KML file.

May be used to help identify the output of separate runnings
of the programme (e.g. ”Batch 1”, ”Batch 2”, etc.).

Pixel Size The width and height of the pixels generated by the interpolation process.
Modifying this has a considerable effect on processing time.

Radius Width The longitudinal distance (in metres)
of the search ellipse used in interpolation.

Radius Height The latitudinal distance (in metres)
of the search ellipse used in interpolation.

Angle The angle of the search ellipse used in interpolation.
Smoothing The smoothing factor applied to the interpolation process.

Higher values generate a smoother output.
Simplification The simplification factor used in the polygonisation process.

Higher values generate polygons with fewer points.

Other than the constructor class, SettingsFrame has a single method get settings, which is used by

the presenter to fetch the user-inputted settings from each of the entry fields.

ConsoleFrame A simple class that contains the console text and entry widgets. Sample output

after processing can be found in Figure 14

Figure 14: Sample output in the ConsoleFrame.

2.8 Extra Features

The KML Creator has three extra features which were implemented to enhance the usability of the

app.

2.8.1 Save/Load State

As it can be a somewhat laborious task to input the values related to each bin into the View,

we implemented a save and load state. When the user exits the programme, the View’s on close

method is called, which in turn calls the Presenter’s save gui state method. This Presenter collects

user input by calling the View’s get csv file path, get rows and get settings methods, saving the

returned data to a JSON file. When the programme is opened again, the Presenter’s load gui state

18

method is called, which in turn calls the View’s set csv file path, set rows and set settings methods,

populating the various user input entry boxes with saved data. If the JSON file does not exist or

is unsuccessfully accessed the saved state is not restored and the user is shown a window without

saved data.

Figure 15: Flowchart of the save and load state

2.8.2 Preloaded Target Columns and Boundary Values

When a user selects and loads a CSV file, two data points are taken from this file, in order to

generate content for the table’s rows. These data points allow for the feature shown in Figure 16.

Figure 16: Demonstration of the minimum and maximum values for the ”bm dens” and ”bm size”
target columns. These values were selected from the combo box, which is populated with the column
names from the user-selected CSV file.

19

• The first datapoint is the column names. As the configuration of each bin pertains to the data

found in a single column of the CSV file, the column name needs to be set for each row in the

table. The column names fills the ”Target Column” combo box, allowing for easy selection.

The use of a combo box also limits the possibility for the user to input invalid column names

and reduces the need for user input validation.

• The second datapoint is the minimum and maximum values for the given target column.

When a column is selected from the ”Target Column” combo box, the column’s minimum and

maximum values are shown in the ”Lower Bound” and ”Upper Bound” columns. This feature

was requested by SeaVis during one of our final meetings and helps the user specify sensible

boundary values.

2.8.3 Submission Spinner and Console Output

Figure 17: The SettingsFrame during processing. The spinner, situated to the right of the ”Process-
ing...” text, captured during its spin. The ”Submit” button is disabled during processing.

After a user has selected a CSV file and input values into the table and settings, the click the

”Submit” button to begin data processing. This process can take some time (in our experience,

up to five minutes) and we thought it advisable to create a visual representation of the status of

the processing. Consequently, we created a spinner, captured in its static state in Figure 17, which

is active during processing. During this time the ”Submit” button is disabled and various update

messages are shown in the console (see Figure 18).

Figure 18: The ConsoleFrame during processing, containing sample output.

For the View not to freeze and allow for the operation of the spinner and the console, Python’s

in-built threading module to run processing. Threading allows simultaneous task handling by fa-

cilitating the execution of multiple concurrent threads within a single programme. The Presenter’s

initialize and run process method starts the thread with the Presenter’s run process method and

the thread exists until that method returns a value.

20

3 Mapping Client

The Mapping Client is the second of the two applications we have created. It is used to display the

data transformed by our KML Creator on a map. The front end of the Mapping Client consists

of approximately 1000 lines of code5, which is written in JavaScript, HTML and CSS6. We then

have approximately 800 lines of code7 covering our Lambda functions which serves as our back end,

these are written strictly in JavaScript. The code is well commented throughout and organised in a

modular manner, separating each component based on its purpose.

The Mapping Client was built with the following requirements in mind:

• It should be able to display KML files on a interactive map in the sense that the user can move

around freely on the map, zoom in and out, etc.

• The map should be integrated into a user-friendly GUI

• The data should be safe behind a user authentication system

• The KML files should be served to the end-user in a secure manner from an external point,

protecting the intellectual property of SeaVis

During the development of the Mapping Client, the above requirements were broken into smaller

tasks, which added up to the whole application. The Mapping Client allows the user to register

and login through a GUI, as seen on Figure 19 and 20. When successfully logged into the Mapping

Client, the user will be met by the actual client, which is only accessible when logged in with a valid

token. The client page contains an interactive map, which has a button from which the user can

choose which files they would like displayed on the map, this can be seen on Figure 21. These files

are served from an external source, consisting of the KML files created using our KML Creator.

The idea is that SeaVis themselves can update these files externally whenever new data-collections

have been conducted. This allows SeaVis to control exactly which data is shown to the end-user in

a secure manner.

5Excluding comments.
6The GitHub repository can be found at the following link: https://github.com/janusmh/SMP-CS-Mapping-

Client-.
7Excluding comments.

21

Figure 19: Register page of the Mapping Client

Figure 20: Login page of the Mapping Client

22

Figure 21: Client page of the Mapping Client, the red coloured polygon shows a layer imported from
a sample KML file.

In the following sections, we explore the final product of the Mapping Client, going through the

three main parts of the application:

• Interface

• Authentication

• File fetching

The different aspects of the three above parts are examined and thoroughly explained.

23

3.1 Interface

The interface of our Mapping Client is designed to be simple, intuitive and user-friendly. Its purpose

is to allow SeaVis’ users to access processed mussel data in a visual way, while keeping the data

secure in order to protect the intellectual property of SeaVis. We have taken a modular approach, by

setting up components for each page and then handling the routing using the React Router library.

We have defined three main routes for navigating our components: the registration page, the login

page and the private client. Each of the routes have assigned either PublicRoute or PrivateRoute,

which are two custom components we’ve created to manage access. The two components verifies the

authentication status of the user based on the presence of a token. In the coming subsections, we

explore the three before-mentioned routes, which makes up the three pages of our application.

3.1.1 Use-case Diagram

Figure 22: The use-case diagram presented here illustrates the key functionalities and interactions
of the Mapping Client.

The use-case diagram on Figure 22 provides an overview of the system’s behaviour from the per-

spective of different actors and highlights the main use cases supported by the application.

24

Actors:

• User: Represents the end-user of the mapping client. They interact with the system to view

and interact with the map and the KML files displayed on the map.

• Administrator: Represents an administrative user of the mapping client, which is SeaVis. They

have additional privileges and can manage user accounts, upload KML files, and configure the

system.

Use cases:

• Display Map and KML Files: This represents the functionality of the mapping client to display

maps and KML files. Both the User and administrator can access this use case to visualise

the map and associated KML files.

• Interact with Map: This represents the ability of both the User and administrator to interact

with the map. It includes functionalities such as zooming, panning, selecting features, and

accessing additional information.

• Manage User Accounts: This is specific to the administrator and allows them to manage

user accounts within the mapping client. They can perform actions like giving permission to

register, modifying existing accounts, or deleting accounts.

• Upload KML Files: This is also exclusive to the administrator and enables them to upload

KML files into the mapping client. This functionality allows the administrator to add new

spatial data to the system for display and analysis.

• Configure System: This is also only restricted to the administrator and involves configuring

the system settings of the mapping client. And it also allows the administrator to modify

various parameters and preferences to customise the behaviour of the application.

3.1.2 Registration page

The registration page, as shown in Figure 19, allows new users to create an account by providing

the necessary information for creating a user. The user data is filled out in a form, which has a

submitHandler [11] function attached that first performs validation checks of the input and then

makes a HTTP request, this is explained in more detail in Section 3.2.1. In our current product, the

registration page is a part of the PublicRoute, making it accessible to anyone. This is merely for

testing and developing purposes and in a final product it should be SeaVis themselves who chooses

who has access to the registration path.

25

3.1.3 Login page

The login page, as show in Figure 20, is designed to authenticate the users of the Mapping Client, by

validating credentials they have registered with. The credentials are filled in a form and the input

is passed on via a HTTP request as described in detail in Section 3.2.2. When a user is successfully

authenticated, they are redirected to our private client. If a user is logged in, we make sure that

they can no longer access the login page and vice versa.

3.1.4 Client page

The private client page, as shown in Figure 21, is protected by our PrivateRoute element, making

sure it is only accessible with a token. The client page holds a welcome message including the name

of the user, followed by instructions of how the client is to be used. A map is also displayed using

Leaflet, which has the KML files displayed on top as layers. The user has the option of turning

different layers on and off, so that they can specifically which data they want displayed on the map.

This way the Mapping Client allows the user to pick out what data they would like to focus on

whether it being mussel density, mussel size, oxygen levels or something else.

The overall design of the Mapping Client is aimed to be simple, leaving room for implementing new

features and paths in future versions. We have taken a modular approach to route management,

using the React Router library, which makes it easier to implement new routes in the future, such

as pages for user profiles, settings, data exploration, etc.

3.2 Authentication

Our authentication system can be split into three parts: user registration, user login and token

verification. In the following subsections we go through each of those and discuss their purpose,

functionality and safety.

3.2.1 User Registration

The first step of user registration happens on the front-end of our application, where the user is

asked to fill out a user registration form consisting of inputting their name, e-mail, username and

password. We have implemented several validation checks on our front-end using regular expressions

[12]. This is done to check that the email is in the correct format, including ”@” and ”.”. For the

password we make sure that the user is creating a ”strong” enough password including at least eight

characters, one uppercase letter, one lowercase letter, one special character and one number. If

the information submitted passes all validation checks, then a POST request is made to our API

Gateway endpoint using Axios. The header of the request consists of our API key and the body of

the information submitted by the user. By using a unique API key, we make sure that no outside

26

requests to our API endpoint can be made. The path of the API endpoint specifically points to our

Lambda function for registration. A Lambda function is a function which is executed in response

to events, in our case they are being triggered by HTTP requests via our APIs. In the case of a

successful request our Lambda function is triggered, first validating that all fields has been filled out,

then validating the username and email to make sure they are not already in use. If they are in use

an error message is returned with an appropriate message. If the checked information is not already

present in our DynamoDB table, then the function proceeds to add salt to the password, then hash

it and our saveUser function is called to store it in our DynamoDB table along with the rest of the

user information. Salting a password means appending a random and unique string of characters to

the user’s password before finally hashing it, in our case the salt consists of a randomly generated

string of 10 characters. By adding salt before hashing the users password, we add an additional

layer of security to avoid attacks such as Rainbow attacks, where attackers pre-compute the hash

values of common passwords [13].

Figure 23: Registration flow showing the process of our Lambda function

3.2.2 User Login

For handling user logins, we take the same approach as with user registration. First the user is

asked to fill in their username and password, upon submitting the login form we first check if all

fields has been filled, if not then a error message is returned accordingly. If all fields are filled in

correctly then a POST request is made using Axios. This time the request is aimed at our API

endpoint for logging in, triggering the Lambda function accordingly. The Lambda function then

retrieves the user data from our DynamoDB table based on the username input in the login form.

Since hashing is a one-way function, when authenticating a user on login, the password input is

27

hashed including our original salt and then compared to the hash stored in our DynamoDB table8.

If the password matches what is stored in our DynamoDB table with the username, then a JSON

Web Token (JWT) is generated for the user. The JWT consists of a payload which includes the

user’s username and name, a secret key for signing the token and a expiry time of one hour.[14] The

JWT is then returned to the client in the HTTP response, which is then saved in the session storage

of the browser.

Figure 24: Login flow showing the process of our Lambda function

3.2.3 Token Authentication

When a user is successfully logged in our Lambda function will generate and return a JWT which is

then stored in the browsers session storage. This is done to safely maintain user sessions across the

mapping client. When the Mapping Client is initially opened by the user, we check if they have a

valid JWT by making a POST request to our API endpoint for user verification. The POST request

then triggers the specific Lambda function which verifies the information included in the POST

request. We have made two functions for handling tokens in our Lambda functions: generateToken

and verifyToken. As the names implies they are for generating tokens when users login and for

verifying tokens on subsequent requests, respectively.

8DynamoDB functions as our user table for storing user information

28

function generateToken(userInfo)

This function is used when we need to generate a new JWT for a user. The JWT is based on the

user’s information by encapsulating it in the JWT. It takes userInfo as an argument, which consists

of the user’s name, email, username and password. If this is not provided then the function will

return null and a JWT will not be generated. If the userInfo is provided, then we take use of jwt.sign,

which is a part of the JWT library, to generate the token. jwt.sign lets us sign the token with the

necessary arguments. This method takes three arguments: the payload (userInfo), a secret key and

the expiration time of the JWT, which are then returned with the function. We have chosen an

expiration time of 1 hour, which is simply based on finding a balance between user convenience and

user safety.

function verifyToken(username, token)

This function is used for verifying the JWT of the user and making sure the JWT matches the

provided username. The function takes two arguments, the username and token. We then use

jwt.verify to verify the token, this function takes three arguments: the token that needs verification,

the secret key and a callback function to handle the result of the verification. We then have different

errors set up depending on the result of the verification, which all result in ”verified” being set to

false. If the token is valid, then ”verified” is set to true with an appropriate message.

In conclusion, our authentication system is token based. By using JWT, we ensure that the user

is validated continuously throughout their interaction with the mapping client. Another approach

would’ve been to take use of Session Authentication, which stores the authentication details server-

side instead of on the user-side [15]. All our APIs are secured using a unique API-key, in order to

prevent any unauthorised outside requests from triggering our Lambda functions. We make sure to

salt and hash the users password using bcryptjs, which makes up good protection for several types

of attacks, such as rainbow and brute-force attacks [16].

3.3 File Fetching

One of our main requirements was to securely display the data provided by SeaVis and processed

by the KML creator. These KML files needed to be securely stored and then served to the mapping

client, also in a secure manner. We have accomplished this by taking the same approach as with

our authentication system, by taking advantage of Lambda functions securely triggered by an API.

In the following section we will explore how we safely manage the processed data and serve it to our

mapping client.

29

3.3.1 Presigned URLs

Upon the user successfully being logged in, they will be redirected to the /client path of our ap-

plication. When initialising the Leaflet map, we also have to fetch the KML files from the private

S3 bucket in which they are stored. This is done by making a GET request to our API endpoint,

which routes this request to a corresponding Lambda function that is then triggered. This function

lists all the objects in our S3 bucket and generates presigned URLs for each object. A presigned

URL provide temporary, secure access to the private objects in our S3 bucket, specifically our KML

files in the format of a URL. We have set the presigned URLs to expire after 10 seconds upon being

generated, leaving enough time to safely fetch them. If the object listing fails for any reason, we

have set up error handling which will return a 500 error response, which indicates an execution error

[17]. This allows us to securely serve these files without exposing them to unauthorised access.

30

4 Tools and Third-Party Packages

This section introduces the third-party tools and packages used throughout the working process,

outlining their role in the project.

4.1 KML Creator

As the KML Creator involves spatial interpolation and manipulation of geospatial data, a number

of libraries were used to work with such data and generate the KML files.

Below are the main libraries the KML Creator utilises:

• GeoPandas GeoDataFrame: A specialised data structure for handling geospatial data, facili-

tating manipulation and analysis.

• GDAL: A library for reading, writing, and manipulating geospatial data formats, used for

interpolation and analysis.

• Shapely: Provides geometric objects for spatial operations within the KML Creator.

• GeoPy: Calculates accurate distances between points on the Earth’s surface.

• Simplekml: Generates KML files from processed geospatial data.

• PyInstaller: Packages the KML Creator and its dependencies into a standalone executable for

easy distribution

These are the main libraries that enables the KML Creator to efficiently process geospatial data,

perform spatial operations, and create KML files for visualisation purposes.

4.1.1 GeoPandas GeoDataFrame

The fundamental data structure used in the KML Creator is the GeoDataFrame, which is a spe-

cialised type of Pandas Dataframe. Pandas is a Python library that is used for data manipulation

and analysis [18]. With Pandas, data can be imported from many formats (CSV, JSON, etc.), and

various data manipulation operations can be carried out: merging, filtering, cleaning, performing

arithmetic operations, etc. Pandas is able to efficiently manipulate large data-sets as it uses vec-

torisation (as oppose to iteration) for many operations. This is important in the KML Creator, as

SeaVis’ data-sets could potentially be millions of rows in length. The primary data structure used

in Pandas is the Dataframe, which is a two-dimensional, labelled and table-like structure.

While Pandas is suitable for general data manipulation, there are many other libraries that are more

suitable for working with geospatial data. There are also more suitable data structures than the

Dataframe. The GeoDataFrame is essentially a Pandas dataframe with an extra column of geospatial

data. This extra ”Geometry” column contains Point objects from the Shapely library [19]. A Point

object takes two arguments: x (longitude) and y (latitude). GeoDataFrame has a method for saving

31

to a file, in a chosen format. Here we employed a popular format: the ESRI Shapefile [20]. The

Shapefile actually consists of four files: the geometric data (.shp), an index file (.shx), an attribute

table (.dbf) and a projection file (.prj). These are commonly found in a single zipped file with a

”.shp.zip” extension. Most importantly, Shapefiles can be used as input and output for the main

computational engine of the KML Creator: GDAL.

4.1.2 GDAL

The Geospatial Data Abstraction Library (GDAL) [21] is an open-source library that provides a set

of tools and functionalities for reading, writing, and manipulating raster and vector geospatial data

formats. The KML Creator uses GDAL twice:

• to perform interpolation and transform vector data (disparate points contained in a Geo-

Dataframe) to raster data (GeoTIFF file)

• to convert the GeoTIFF file back into vector data, through the process of polygonisation (see

Section 2.2)

4.1.3 Other geospatial libraries (Shapely and Geopy)

While GDAL provided the necessary algorithms to convert between raster and vector files, there

were are a number of other geospatial libraries that fulfil minor roles:

In the KML Creator, the Shapely library is widely used for type annotations: for the Point objects

used in the GeoDataframe and the Polygon and MultiPolygon objects used in the GeoDataframe

imported from the polygonised Shapefile. Shapely performs a more functional role in the final

creation of the KML file: the unary union function unites polygons which overlap.

GeoPy is used to calculate the distance from one point (latitude and longitude) to another. This is

a non-trivial calculation to make accurately as the globe is not perfectly spherical. We have used the

GeoPy.distance module to calculate distance using the World Geodetic System (WGS-84), which is

said to be the most accurate model for any location in on the globe [22]. GeoPy uses its own Point

objects, which are distinct from the Shapely Point objects used in GeoDataframe.

4.1.4 Simplekml

Keyhole Markup Language (KML) is an XML-based file format used for representing and visualising

geographic data, such as points, lines and polygons [23]. We use the Simplekml library to create

KML files from the GeoDataframe containing polygons and MultiPolygons. A sample KML file can

be found in Section 8.4.

32

4.1.5 PyInstaller

PyInstaller is a tool used to convert the KML Creator and its dependencies into a standalone

executable. By tying up the script and dependencies, PyInstaller simplifies the distribution process,

removing the need for a separate Python installation and compiler. With this, the user can easily run

the KML Creator on different machines without worrying about Python or dependency management

[24].

PyInstaller automatically detects and includes the necessary components into the executable or

directory, making it a self-contained environment for end-users. Within PyInstaller, customisation

options are available, which allowed us to fine-tune the packaged executable for the KML Creator.

With the extra options, additional files and or directories can be added, modules can be excluded,

and runtime options can be set for optimal performance.

4.1.6 Other tools

There are a number of tools we used throughout the process, which are not intended to be included

in the final product. Chief amongst these is Pre-commit, which enables the setup of pre-commit

hooks, which are automated checks that run before committing code to GitHub. We were able

to ensure a certain level of code quality and adherence to coding standards by using the following

pre-commit hooks: trailing-whitespace, requirements-txt-fixer, trailing-whitespace, end-of-file-fixer

and jupyter-black. In addition to these tools, we also made use of Matplotlib [25] to visualise data

during development.

4.2 Mapping Client

In the following section, we discuss the various tools and packages used in the development of the

mapping client. These include:

• React: A component-based architecture for creating complex UIs.

• Leaflet: An open-source JavaScript library designed for building web-based mapping applica-

tions, providing interactive and responsive maps.

• Leaflet KML: Parses and displays KML files on a Leaflet map.

• Axios: an HTTP client used in the front-end for accessing APIs triggering Lambda functions,

and facilitating tasks like user authentication and secure file retrieval.

• AWS Lambda: A server-less computing service that handles user authentication in the Map-

ping Client and serves KML files from a private S3 bucket.

• API Gateway: Facilitates secure information between the front-end and back-end through

RESTful APIs.

33

• DynamoDB: a NoSQL database used for secure storage and verification of user information

during registration and login in the Mapping Client.

• S3: A storage service used to securely store and retrieve KML files in the mapping client.

• bcryptjs: JavaScript library used in the Mapping Client, to securely hash and compare user

passwords during registration and login.

• JSON Web Token: Used for secure user authentication in the Mapping Client.

• React Router: A package used to handle routing of the Mapping Client

These are the main tools used in the mapping client, that enables it to efficiently visualise and

securely store KML files, while ensuring a secure login process.

4.2.1 React

One of the key benefits of using React is its component-based architecture. React components

are modular, reusable building blocks that allow you to create complex user interfaces with ease.

Each component encapsulates its own state and logic, making it easy to manage and update the

application’s UI.

Additionally, React has a large and active community, which means there are many resources avail-

able to help you learn and troubleshoot any issues you may encounter while building your application.

There are also many third-party libraries and tools available that can enhance your React applica-

tion, such as Redux for state management and React Router for managing application routing.

4.2.2 Leaflet

Leaflet is a widely-used open-source JavaScript library that is specifically designed for building web-

based mapping applications. It provides a comprehensive range of tools and features that allow

developers to create interactive and responsive maps with ease. With Leaflet, we will be able to

create an engaging and user-friendly interactive map to visualise the mussel data, displaying the

mussel density at different locations in the sea. The map will be an essential component of the

mapping client, helping users to make informed decisions based on the latest data [26].

4.2.3 Leaflet KML

Leaflet KML is a package that lets you parse and display KML files on a Leaflet map, since KML

isn’t a supported format by Leaflet [27]. This is done by parsing the KML data to corresponding

Leaflet layers. We have used it for parsing our KML files from our KML Creator and display them

on a Leaflet map in our mapping client.

34

4.2.4 Axios

Axios is a promise-based HTTP Client for JavaScript, allowing us to make HTTP requests from our

front-end [28]. We have used Axios for making POST and GET requests to our APIs depending on

the need. Axios serves as a crucial part of accessing our APIs and triggering our Lambda functions

when either authenticating a user or fetching files securely from our S3 bucket.

4.2.5 AWS Lambda

AWS Lambda is a server-less computing service provided by Amazon Web Services (AWS). It allows

its users to execute code on their back-end without having to create and manage their own servers,

hence it’s referred to as server-less [29]. The Lambda functions set up can be triggered by HTTP

requests coming from the front-end of your application and the user only pays for the requests made,

making it cost-effective.

AWS Lambda serves as a key component to handle user authentication of the mapping client.

We have developed three primary functions, which handle user registration, user login, and token

verification (see Section 3.2). These functions are triggered based on which of our API endpoints that

receives a HTTP request from our front-end. We have also used AWS Lambda for serving KML files

stored in a private S3 bucket to our mapping client. For this we have developed a Lambda function,

which generates presigned URLs that gives the mapping client temporary access to the files in our

bucket.

4.2.6 API Gateway

Amazon API Gateway is a service for creating, deploying, and maintaining APIs. Being a part

of AWS, it’s fully compatible with many of the other services provided by Amazon, such as AWS

Lambda, DynamoDB and S3 [30]. We have used API Gateway for creating RESTful9 APIs, which

are HTTP based allowing the use of HTTP requests, such as GET, POST, PATCH and DELETE.

This provides a safe way of exchanging information between our front- and back-end.

Specifically, we have implemented three POST methods corresponding to the Lambda functions

previously described: user registration, user login and token verification. Each API endpoint is

secured with a unique API key, which ensures that only valid requests from our front-end can

interact with our back-end services through the API. We have also implemented a GET method for

fetching the KML files directly from our private S3 bucket.

9A RESTful API is a framework for an application program interface (API) that utilises HTTP requests to access
and manipulate data. [31]

35

4.2.7 DynamoDB

Amazon DynamoDB is a NoSQL database, making it flexible as its designed to not rely on predefined

tables and fixed column definitions [32]. We are using DynamoDB to safely store and check user

information when registering and logging in. Upon registering we store the username, name, e-mail,

and password input by the user. When a user logs into the mapping client, our Lambda function

fetches the user data from DynamoDB using the provided username. The hashed password stored in

DynamoDB is then compared with the provided password, which is also hashed, and if they match,

the user is authenticated.

4.2.8 S3

Amazon S3 is a storage service provided by Amazon, which allows its users to safely store objects

remotely [33]. We have used Amazon S3 to store and retrieve our KML files that are to be displayed

on the Leaflet map when the user is successfully signed into the mapping client. The KML files are

stored as objects within an S3 bucket each object is associated with a key, which is unique.

As previously explained, we securely fetch the KML files by triggering a Lambda function through

a HTTP request that is made once a user is successfully logged in. Our Lambda function lists all

the objects in our S3 bucket, generates a presigned URL for each file, and then returns these URLs

in the response body. By retrieving a list of all our stored objects, it allows us to easily update our

S3 bucket with new KML files once new data has been processed.

4.2.9 bcryptjs

bcryptjs is a JavaScript implementation of the bcrypt password-hashing function [34]. In our map-

ping client, bcryptjs is utilised for hashing user passwords during registration before storing it in

our DynamoDB table. However, what is special about bcryptjs is that it adds salt to the password

before hashing it.

4.2.10 JSON Web Token

JSON Web Token (JWT) is an open standard, allowing for securely transmitting information be-

tween parties [35], such as an applications front-end and its servers back-end. In our mapping client,

we are using JWT to authenticate users when they are successfully logged into the application. This

is done by returning a JWT in the the response, when a user is logged in. The token is then stored

in the session storage and checked every time the user makes a request to the server that needs to

be authenticated, such as accessing the mapping client itself.

36

4.2.11 React Router

React Router is a library for React, which provides tools for handling the navigation of an application

[36]. In the Mapping Client, we have used React Router to define the different paths which leads to

the different components of the application. This allows us to define which components are rendered

depending on the route.

4.2.12 Other tools

During the development of the Mapping Client we also took use of a few tools, which are not

intended to be used in our final product. This mainly concerns the use of Mocha, Chai and Axios

Mock Adapter.

• Mocha is is a test framework based on JavaScript and running on Node.js [37].

• Chai is an assertion library for JavaScript, which provides a way of defining tests [38].

• Axios Mock Adapter allows for making mock HTTP requests in the style of Axios [39].

We have used the above libraries for performing assertion tests of our front-end password validation

and testing for the return of different status codes from our APIs depending on the request made.

4.3 TimeZero

TimeZero is a software company that was established to cater to the unique needs of the recreational

sailing, cruising, and regatta industries. The company has developed a comprehensive platform that

provides a range of solutions to the marine industry. With over 25,000 installations worldwide

TimeZero is also offered in many languages such as Danish.

One of the standout features of TimeZero is their mapping client. This client is fully interactive and

provides users with a range of tools and functionalities that allow them to easily navigate waterways.

TimeZero has developed a flexible approach that allows third-party companies to create their own

data sets that are compatible with the mapping client. This approach enables these companies

to offer tailored services to their users, providing a more personalised experience that meets their

specific needs. One such third-party company is SeaVis, which has integrated mussel data into the

mapping client to offer an more enhanced experience to their users [40].

37

5 Testing

When testing the clients individually, focus was placed upon how a user might make a mistake or

how the client might display the data wrongfully. So the testing process was executed from the

perspective of a potential user of the clients. By making sure that the correct error messages was

displayed when an error occurred, and decrease the chances for a user to make mistakes such as

entering the wrong password when registering an account.

5.1 TimeZero Mapping Client

When adapting TimeZero into our product solution, we needed to conduct test it in two different

parts of our project. Firstly regarding the software’s capabilities and compatibility, in order to

create a product that would work symbiotically with it. Secondly when we finished developing our

programme for TimeZero. Here we needed to ensure, that TimeZero would portray our KML file

correctly with all perimeters, such as smoothing, and layer colour.

5.1.1 Testing TimeZero

When testing the capability of TimeZero, we first formatted the SeaVis data to an XYZ file, to test

if this file type was compatible with our data and TimeZero. When uploaded, the data was not

projected and we therefore had find another file type to visualise the data. After trail and error, we

attempted with a KML file, which portrait the the data correctly, This let us to the creation of our

KML creator. When testing our KML creator in TimeZero, all parameters were displayed correctly,

in exception for the bin colour. This mistake was later corrected in our KML creator.

5.2 KML Creator

The testing of our KML creator plays a big role in reassuring the reliability and correctness of our

KML creator. We do that by verifying the functionally of the application through testing. This also

helps us identify and fix any issues or bugs.

5.2.1 Black-box testing KML creator

When testing the KML creators functionality, we developed sets of tests, that covers our bins, preper

and runner classes, as well as our generating of KML files. the initialisation tests on our bin, preper

and runner has been implemented in each classes. These tests can be run with the following command

: ”python -m unittest tests.test backend” and ensure that the classes can be instantiated correctly

and that their properties are set as intended. The functionality of the application is thoroughly

tested through a series of tests that simulate the entire process from CSV to KML generation.

38

these test includes Creating the shapefile for each bin, Running interpolation for each bin, running

polygonisation for each bin and crating KML for each bin.

5.2.2 Parameter Testing

In this section we test the different parameters of the KML Creator. Testing the different parameters

is a crucial aspect of optimising our application, and making sure the parameters work as intended.

We will discuss the assessment of several key parameters, namely the height and width of the search

ellipse, simplification, pixel size and angle. We have aimed to understand how these parameters

affect the performance of the application and the outcome of the KML file that is created. To test

the different parameters we made several KML files of the same CSV file, and then proceeded to

compare different values of the parameters. Below is the KML file with the default settings of the

KML Creator.

Figure 25: Output KML with default settings of KML Creator:
Pixel Size = 10, Radius Width & Height = 60, Smoothing = 10, Angle = 0

39

The first parameter that was tested, was the height and the width of the search ellipse. As seen in

the figure below, there is a drastic change in how the KML looks. As anticipated, the search ellipse

operates in the manner described in Section 2.1, thus validating the expected outcome.

Figure 26: Search Ellipse Height and Width = 50
metres

Figure 27: Search Ellipse Height and Width = 30
metres

Next, we examined the simplification parameter. The figure below illustrates the noticeable impact

of this parameter on the edges of the data points. As simplification decreases, the edges become

rougher and more pixelated, resulting in a less streamlined appearance. It is also important to note

that this decrease in simplicity can potentially affect performance, as larger amounts of data are

required, subsequently leading to larger KML file sizes.

Figure 28: Simplification = 10 Figure 29: Simplification = 0

40

In the next test, we focused on adjusting the pixel size, ranging from 10 to 50 metres. This adjustment

had profound impact on the resulting KML file. As seen on the figures below, the data points have

transformed into larger pixels, as all the interpolated data points have clustered into several big

data points. This change in appearance brought a notable performance enhancement, specifically in

terms of the KML file size reduction, as fewer coordinates are required.

Figure 30: Pixel size = 10 metres Figure 31: Pixel size = 50 metres

In the final test, we examined the impact of adjusting the angle of the search ellipse from 0 to 45

degrees. Some changes were observed in the resulting KML file, which is surprising considering that

in this case the search ellipse is a circle, which ought to be identical for any angle of rotation. One

plausible explanation for the differing output has to do with the curvature of the earth. In the

Runner’s run interpolation for each bin method the search ellipse width and height is converted to

degrees, using a non-spherical model of the earth. When this search ellipse is rotated, it may not

take into consideration the not-perfectly-spherical model of the earth, leading to different algorithmic

output.

41

Figure 32: Angle = 0 degrees Figure 33: Angle = 45 degrees

5.3 Standalone Mapping Client

The mapping client provides the user with multiple functions and services, such as a login function

that guarantees SeaVis that the intellectual properties of the client is protected, an interactive client,

where the user can zoom in and out, as well as move around on the map.

5.3.1 Black-box Testing Mapping Client

When testing the standalone mapping client, we focused on the security aspect of the client. The

purpose of the security is to protect the intellectual properties of the client. To confirm that the client

is secure, we’ve had to detect and prevent ways of bypassing the login function, and thereby getting

direct access to the client without a valid token. such as bypassing the registration by changing

the URL to the URL of the client. This was prevented by redirecting the user to the registration if

an attempt to access the client without a valid token has occurred. another feature regarding our

security system, is the requirement that the user repeat their password twice To make sure that the

user has entered the correct information and reduce the probability of text error, we decided that

the user had to enter the password twice. An additional login feature was the error messages when

a user attempts to use an email that dose not contain valid email requirements, the way we set up

the requirements was that we separated the email into three part. The email must contain letters

and numbers prior and after the ’@’ the second parameter set upon the email, is that there must be

between 2-4 characters after the ’.’. Further parameters was set for the password, such as number

inclusion, uppercase letter and as mentioned before, a correct repeat of password.

42

Figure 34: Invalid email Figure 35: Invalid password

after integrating these functions in our client, we estimate that the chance for creating faulty pass-

word is minimised drastically.

5.3.2 Unit Tests

We have written several unit tests for our ”ValidationService” module, testing all the functions used.

This is done using Mocha and Chai as explained in Section 4.2.12, more specifically we take use

of Chai’s ”expect” function, which lets us make assertions about the expected result of each test.

We have specifically written tests for validation of name, email, username, password and repeat

password, testing for both valid and invalid input. This is done to ensure that the logic of our

validation tests work as intended. The results of our tests can be seen on Figure 36.

5.3.3 Integration Tests

We have written a few integration tests, to check if our API handles user input as expected. The tests

consist of two inputs, ”validUser” and ”invalidUser” corresponding to a valid user input and a invalid

user input. We take use of Chai’s ”expect” function, which again lets us make assertions about the

returned response. The tests consists of POST requests to the API endpoints of registration and

login, containing the valid and invalid user input. We then assert the returned response based on

the input. The results of our integration tests can be seen in Figure 36, along the results of our unit

tests.

43

Figure 36: Results of our unit and integration tests

5.4 Product Testing

Throughout the course of developing both clients, white-box and black-box testing were performed

to ensure that the final product is as refined as possible.

5.5 Challenges of Using Fabricated Data

The following section discusses the challenges encountered while working with fabricated data and

the measures taken to address these challenges in the development of the data interpolation client.

The project involved a request for data from SeaVis, but since they could not provide real-life

data, we had to work with a fabricated data-set consisting of roughly 500,000 data points that were

designed to simulate real data. The use of fabricated data presented a significant challenge, as we

had no prior knowledge of how the actual data should look, making it impossible to confirm whether

the interpolation methods and parameters applied to the fabricated data would work with actual

data.

We then interpolated the data using various methods and parameters (see Section 2.1), producing

the final product shown in Figure 25, which depicts the transformed and interpolated data. However,

the resulting image appeared unrealistic as it seems too orderly and as if the regions with mussels

were simply drawn by the human hand, on top of the map. As we are not mussel experts, we cannot

confirm whether this is how it would actually look in real life.

44

To further explore the limits of the interpolation method, we generated synthetic data-sets solely for

testing purposes. The synthetic data-sets were not intended to replicate any real-life systems, but

instead aimed to evaluate the accuracy of the interpolation algorithm under different conditions.

To address the challenges of working with fabricated data, we added noise to the data and evaluated

the output of the interpolation algorithm. We also assessed the algorithm’s performance using dif-

ferent types of synthetic data to confirm its effectiveness under different conditions. These measures

enabled us to overcome the challenges posed by working with fabricated data and to develop an

effective interpolation client. When presented with the visual result of the fabricated data, Bjørn

responded with:

”I think a lot of (...) the issues that I have with the result is because of the [fabricated] data set.

More than it’s because of your programme ”[1].

In addition to the data visualisation, we also presented the data processing client, used to convert

data into layers of .KML files. The client contains a variety of parameters to define the data layer,

such as data category, size, colour, etc. Based on the feedback from the presentation, there was

a suggestion to add the lower and upper bound in from of percentages within the data-set inputs.

This would provide a clearer understanding of the range of values associated with the data-sets.

”So if you look at the software you have (...) especially with the [mussel] density, that I know this

is going to be, I would like this to be some kind of percentage” [1]

45

6 Project Development and Discussion

In this section, we will outline the difficulties faced and decisions made during the development of

the project.

6.1 Interpolation Algorithm

When selecting an interpolation algorithm for our project, we evaluated several algorithms provided

by GDAL. Within their library and the gdal.grid function, we could choose from Inverse Distance,

Moving Average, Nearest Neighbour, and Linear interpolation algorithm [41]. After careful consid-

eration, we decided to use the Moving Average algorithm (see Section 2.1), due to its suitability and

performance for our data-set.

The Moving Average algorithm yielded satisfactory results with minimal unobserved data points

during the interpolation process (see Figure 37). While alternative algorithms like Inverse Distance

or Nearest Neighbour appeared more visually appealing (see Figure 38), they did not provide the

desired accuracy when converting the resulting GeoTIFF files into KML files using the KML Creator.

Figure 37: Moving Average interpolation algo-
rithm

Figure 38: Inverse Distance interpolation algo-
rithm

By choosing the Moving Average algorithm, we achieved a balance between accuracy and visual

representation. The algorithm effectively estimated values between known data points while also

maintaining the integrity of the original data points. Taking this approach ensured reliable interpo-

lated results that aligned well with the characteristics of our geospatial data-set.

46

6.1.1 GUI vs Command-line

When designing our application, we faced the decision of whether to create a command-line interface

or a graphical user interface (GUI). After careful consideration, we decided to create a GUI for our

application for several reasons.

• A GUI is more intuitive and user-friendly compared to command-line interfaces.

• A GUI allows users to interact with the application visually, eliminating the need to remember

and type specific commands.

• a GUI provides a more immersive experience for users, as they can see real-time reflections of

their actions on the screen.

• a GUI enhances users’ sense of control and satisfaction when using the application.

• Creating a GUI helps showcase the application’s functionality in a visually appealing manner.

• a GUI Makes it easier to highlight important features and make easier for users to navigate

and our application

Using a GUI also has its disadvantages. Firstly, generally GUIs are very resource-intensive, requiring

more memory and processing power, making it challenging to work on older systems. Additionally,

GUIs often have limited flexibility. A GUI provides a predefined set of options and interactions,

which therefore limits the flexibility and customisation available to users.

6.2 Electron

In the early stages of developing the Mapping Client we wanted it to be a desktop application.

For that we used Electron, which is a runtime framework that allows developers to create cross-

platform desktop applications using web technologies such as HTML, CSS, and JavaScript [42].

Electron resembles the architecture of a modern website, however, it’s contents will be rendered

as a desktop application. Later in development we decided to design the Mapping Client solely

as a web application and switched to the use of React. The old version of the Mapping Client

before we started using React can be seen on Figure 39. The decision was based on making the

application more efficient when it comes to deploying updates, such as adding new data to display,

and improving availability. We also made sure that our web application could be rendered using

Electron, meaning the option for making it a desktop application would always be available even

when sticking to React. This is done by creating a wrapper for our React application to be rendered

using Electron [43].

47

Figure 39: Old version of the Mapping Client

The above illustration was one of the earliest versions of the Mapping Client, which instead of

fetching the files externally, they were imported locally by the user.

6.3 Difficulties of Using PyInstaller

When we set out to distribute our Python programme, we wanted to make it as easy as possible for

end users to install and run it without having to worry about installing Python or any dependen-

cies. After some research, we decided to use PyInstaller, which a Python library that can package

Python applications as a standalone executable. Installing PyInstaller was straightforward using

pip, however, we ran into some difficulties during the process of creating the executable.

As newcomers to PyInstaller, we found it challenging to determine which commands to use and

when. We eventually decided to try auto-py-to-exe, a package that integrates PyInstaller with a

user-friendly GUI interface. Although this made the process easier, we still encountered issues, such

as ensuring all the necessary files were in the correct location. Fortunately, PyInstaller provided

helpful error messages that made it easier to troubleshoot and fix these issues. One of the biggest

challenges we faced was packaging the GDAL module, which was difficult to install and even harder to

make into an executable. We spent a considerable amount of time researching and testing different

approaches, and ultimately were able to include GDAL in the final executable (see Section 8.2).

Overall, PyInstaller was a helpful tool that simplified the installation process for end users by

eliminating the need to install Python or any dependencies. We tested the executable on different

operating systems, and it worked seamlessly in each case [24].

48

6.4 Third-party Tools and Libraries

Since both the KML Creator and the mapping client are relatively complex applications a significant

amount of third-party tools and libraries is utilised due to various reasons. First of all, it was done

to safe time and effort instead of building certain components from scratch, as well as to ass new

features and capabilities to the code. Another reason was to improve the overall quality of the code

and reduce the risk of introducing errors as the libraries and tools we used are reliable and have been

thoroughly tested. Relying on the 3rd party tools and libraries also allows us to fill in the expertise

gap, since it would be unrealistic to obtain a stable and operational final product. However, there

is a potential risk of over-reliance that can make it difficult to fully understand the code. Therefore,

it may be harder to potentially troubleshoot problems or make changes to the code. Third-party

tools and libraries may not always be compatible with the specific environment or technology. This

can lead to conflicts or errors that can be difficult to resolve [44]. Another issue is installation and

integration of 3rd party tools and libraries that can be quite challenging. A particular examples

within our project include GDAL and PyInstaller. Overall, due to the complexity of this project,

the used amount of third-party tools and libraries is justified since those provide functionalities that

are important, but are not essential for the implementation of the general concept both for KML

Creator and mapping client applications.

6.5 Dual Applications: Data Formatting and Mapping Client

One of the most significant decisions made while developing this project was an idea to split our

effort into 2 general directions: developing a way of formatting the data from SeaVis into a suitable

format and creating a standalone mapping client that could display the formatted data. There were

certain reasons for such a decision: as the project work started, the information we were getting

from SeaVis was limited and there was no guarantee that we would get access to TimeZero in order

to test the outcome and quality of the KML Creator. The other reason was our aspiration to expand

the project beyond the scope of the SeaVis’s requirements, while learning about and implementing

certain aspects such as functioning GUI and the elements of data security. It also allowed us to

distinguish our work from the project that has been done before (see Section 1.3). Overall, while

decentralising our working efforts, we managed not only to fulfil the primary requirement and goal

of this project, but also to explore and implement new aspects and features, as well as to provide a

suitable alternative for TimeZero mapping client.

49

6.6 Workload Distribution and Organisation

Throughout the course of the project, every week two group meetings were conducted. Primarily

utilised for sharing progress and keeping every group member up to date, as well as to brainstorm

certain aspects of the project and plan out further work. The workload was divided into 3 major

areas: data processing application, mapping client as well as report writing and documentation.

GitHub was one of the primary tools used in this project. Used for both data storage and sharing

purposes, it also provided a space to distribute the workload via the usage of Kanban boards. The

code and other relevant data were stored in 2 repositories, one for KML Creator and another for

mapping client.

6.7 Requirements

Overall, the primary requirement from SeaVis was successfully fulfilled. The current version of KML

Creator is capable of converting the raw data into the type that can be successfully imported into

TimeZero. We also fulfilled some of the SeaVis’ recommendations such as making sure that KML is

the format of the output file. Suggestions regarding the visual aspects of GUI were also taken into

account. However, some recommendations were not fulfilled. The options of forecasting the mussel

growth and representing the data as 3D were disregarded, due to the limitations that TimeZero

provided. It was decided not to include those options in the mapping client, as we wanted to pursue

other aspects such as data security. As for our own requirements, we managed to fulfil all of the

major ones, both general and specific ones for KML Creator and mapping client. Additionally we

showcased the final version of the KML Creator to SeaVis’s representative and got positive feedback

confirming that the we have indeed fulfilled their requirements.

6.8 Future Directions

While our final product is sufficient, it also provides a base for further development. Some general

improvements such as, bug fixing, seeking solutions to make the programme execution faster and

more efficient, as well as improving the visual and technical representation could be implemented.

However, it is also possible to outline a sample of more specific directions for the further development

of both programs.

50

KML Creator The KML Creator fulfils its task well, but there are some ways that it could be

improved.

• Submission is not possible when any of the table’s values are blank and the user receives an

error message pop-up box. However, this is the only user input validation used, which means

that the user could input none-sense values and crash the programme. We did not prioritise

user input validation for the View because we knew that a single user (Bjørn from SeaVis)

would be using the programme and that the scope for issues would thus be limited. More

thorough user validation would be a good idea, nonetheless, and could be easily added.

• Once a submission is underway, it is not possible to halt it, unless you force quit the whole.

Ideally, there should be a way of interrupting the thread containing the running process,

bringing it to a stop.

• Although the console box (in ConsoleFrame) is scrollable (you can use the wheel on your mouse

to navigate up and down), the scrollbar itself has not been properly implemented. A scrollbar

would aid usability

For the KML Creator, one can expand the number of file types that can be obtained after processing

the raw CSV file and provide a user with the option to choose which file type is desirable as an output.

Another potential direction could be the implementation of predicting the relevant data based on

the imported data-set via the implementation of machine learning aspects. An example of such

could be predicting the change of mussel density over time.

Mapping Client For the mapping client, different ways of data representation such as 3D view

could be introduced. Providing a user with more tools for interacting with the data could be another

viable expansion path. For example, if the mapping client could construct a route that results in the

most energy-efficient and effective route for mussel harvesting based on the imported data. Making

the application more informative, but keeping it relatively simple and user-friendly can also be useful

to improve the user experience and increase the adoption of the mapping system. Additionally, the

inclusion of the search and filter functions, can allow a user to quickly locate specific information

and analyse the mussel data in a more meaningful way.

Overall, both the KML Creator and the mapping client can be expanded in various directions.

51

7 Conclusion

In conclusion, we have successfully managed to create two standalone applications, fulfilling all of

the requirements stated by SeaVis and ones that we implemented ourselves. KML Creator allows

SeaVis to convert raw data into a format that can be displayed in TimeZero, while the mapping client

provides a user-friendly way of displaying the formatted data, showcasing the mussels on the seafloor

and including the data security features such as the login service. Therefore, we successfully answered

our research questions outlined in the introduction of this report. Throughout the development

of this project, wide-ranging research has been conducted on many topics, such as interpolation,

polygonisation, and data security. Extensive testing and bug fixing was constantly being applied

throughout the development stage. The final product is comprehensive and self-sufficient holistic

solution with two applications that are used to format and display the input data. Both applications

contain a significant amount of features, and provide an extensive base for further development.

Overall, the project allowed us to learn a lot of new concepts and most importantly to understand

and go through the different stages of app development process.

52

References

[1] T. E. O’Neill and E. S. Pedersen, SeaVis Interview, Full interview can be found in the Appendix

(8.6), 2023.

[2] C. F. C. Saurel, DTU Project Bank, Accessed: May 8, 2023. [Online]. Available: https ://

projektbank.dtu.dk/en-us/Pages/BulletinView.aspx?EntityId=bcda62b3-a939-e811-8116-

005056a057de.

[3] River Cottage Reunited, Discover the benefits of rope-grown mussels, Accessed: May 8, 2023.

[Online]. Available: https://www.learningwithexperts.com/river-cottage-reunited/projects/

discover-the-benefits-of-rope-grown-mussels.

[4] M. H. Trojahn, M. V. J. Puggaard, and M. J. V. Jørgensen, “Mussels in Limfjorden - A Data

Visualisation Software of Mussel Density,” 2022.

[5] Pre-commit, pre-commit, Accessed: May 22, 2023. [Online]. Available: https://pre-commit.

com/.

[6] Making Sense Remotely, Spatial interpolation — moving average, Accessed: April 26, 2023,

2021. [Online]. Available: https://www.youtube.com/watch?v=OfC3KpL4PRw.

[7] F. Warmerdam and E. Rouault, GDAL polygonize.py, Accessed: May 14, 2023. [Online]. Avail-

able: https://gdal.org/programs/gdal polygonize.html.

[8] S. Documentation, object.simplify, Accessed: May 18, 2023. [Online]. Available: https://shape

ly.readthedocs.io/en/stable/manual.html#other-transformations.

[9] S. Documentation, unary union, Accessed: May 21, 2023. [Online]. Available: https://shapely.

readthedocs.io/en/stable/reference/shapely.unary union.html.

[10] M. Gharbi, A. Koschel, and A. Rausch, Software Architecture Fundamentals: A Study Guide

for the Certified Professional for Software Architecture®–Foundation Level–iSAQB compliant.

dpunkt. verlag, 2019.

[11] Kent C. Dodds, How to type a React form onSubmit handler, Accessed: May 23rd, 2023.

[Online]. Available: https://epicreact.dev/how-to-type-a-react-form-on-submit-handler/.

[12] W3Schools, JavaScript RegExp Reference, Accessed: May 23rd, 2023. [Online]. Available: https:

//www.w3schools.com/jsref/jsref obj regexp.asp.

[13] GeeksforGeeks, Understanding rainbow table attack, Accessed: May 21, 2023, 2023. [Online].

Available: https://www.geeksforgeeks.org/understanding-rainbow-table-attack/.

53

https://projektbank.dtu.dk/en-us/Pages/BulletinView.aspx?EntityId=bcda62b3-a939-e811-8116-005056a057de
https://projektbank.dtu.dk/en-us/Pages/BulletinView.aspx?EntityId=bcda62b3-a939-e811-8116-005056a057de
https://projektbank.dtu.dk/en-us/Pages/BulletinView.aspx?EntityId=bcda62b3-a939-e811-8116-005056a057de
https://www.learningwithexperts.com/river-cottage-reunited/projects/discover-the-benefits-of-rope-grown-mussels
https://www.learningwithexperts.com/river-cottage-reunited/projects/discover-the-benefits-of-rope-grown-mussels
https://pre-commit.com/
https://pre-commit.com/
https://www.youtube.com/watch?v=OfC3KpL4PRw
https://gdal.org/programs/gdal_polygonize.html
https://shapely.readthedocs.io/en/stable/manual.html#other-transformations
https://shapely.readthedocs.io/en/stable/manual.html#other-transformations
https://shapely.readthedocs.io/en/stable/reference/shapely.unary_union.html
https://shapely.readthedocs.io/en/stable/reference/shapely.unary_union.html
https://epicreact.dev/how-to-type-a-react-form-on-submit-handler/
https://www.w3schools.com/jsref/jsref_obj_regexp.asp
https://www.w3schools.com/jsref/jsref_obj_regexp.asp
https://www.geeksforgeeks.org/understanding-rainbow-table-attack/

[14] Auth0, Introduction to json web tokens, Accessed: May 21, 2023, 2023. [Online]. Available:

https://jwt.io/introduction.

[15] GeeksforGeeks, Session vs token-based authentication, Accessed: May 21, 2023, 2022. [Online].

Available: https://www.geeksforgeeks.org/session-vs-token-based-authentication/.

[16] R. Karthika, “Providing password security by salted password hashing using bcrypt algo-

rithm,” 2015.

[17] Mozilla Developer Network, 500 Internal Server Error, Accessed: May 23rd, 2023. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500.

[18] NumFOCUS, Inc., Pandas, Accessed: May 14, 2023. [Online]. Available: https : / /pandas .

pydata.org/about/index.html.

[19] GeoPandas Developers, GeoPandas, Accessed: May 13, 2023. [Online]. Available: https ://

geopandas.org/en/stable/about.html.

[20] Environmental Systems Research Institute (ESRI), Shapefile Technical Description, Accessed:

May 12, 2023, 1998. [Online]. Available: https : //www .esri . com/content/dam/esrisites/

sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf.

[21] F. Warmerdam and E. Rouault, GDAL, Accessed: May 13, 2023. [Online]. Available: https:

//gdal.org/index.html.

[22] Sphinx, geopy.distance module - geopy 2.2.0 documentation, Accessed: May 14, 2023. [Online].

Available: https://geopy.readthedocs.io/en/stable/#module-geopy.distance.

[23] Google Developers, KML Reference, Accessed: May 14, 2023. [Online]. Available: https ://

developers.google.com/kml/documentation/kmlreference.

[24] D. Cortesi, PyInstaller, Accessed: May 13, 2023. [Online]. Available: https://pyinstaller.org/

en/stable/.

[25] Matplotlib Contributors, Matplotlib, Accessed: May 15, 2023, 2023. [Online]. Available: https:

//matplotlib.org/.

[26] Leafletjs, Leaflet, Accessed: May 23rd, 2023. [Online]. Available: https://leafletjs.com/index.

html.

[27] npm, leaflet-kml, Accessed: May 23rd, 2023, 2019. [Online]. Available: https://www.npmjs.

com/package/leaflet-kml.

54

https://jwt.io/introduction
https://www.geeksforgeeks.org/session-vs-token-based-authentication/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://pandas.pydata.org/about/index.html
https://pandas.pydata.org/about/index.html
https://geopandas.org/en/stable/about.html
https://geopandas.org/en/stable/about.html
https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf
https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf
https://gdal.org/index.html
https://gdal.org/index.html
https://geopy.readthedocs.io/en/stable/#module-geopy.distance
https://developers.google.com/kml/documentation/kmlreference
https://developers.google.com/kml/documentation/kmlreference
https://pyinstaller.org/en/stable/
https://pyinstaller.org/en/stable/
https://matplotlib.org/
https://matplotlib.org/
https://leafletjs.com/index.html
https://leafletjs.com/index.html
https://www.npmjs.com/package/leaflet-kml
https://www.npmjs.com/package/leaflet-kml

[28] Axios, What is Axios? Accessed: May 23rd, 2023. [Online]. Available: https://axios- http.

com/docs/intro.

[29] Amazon Web Services, AWS Lambda: Developer Guide, Accessed: May 9, 2023, 2023. [Online].

Available: https://docs.aws.amazon.com/pdfs/lambda/latest/dg/lambda-dg.pdf.

[30] A. W. Services, Amazon API Gateway: Developer Guide, Accessed: May 9, 2023, 2023. [Online].

Available: https://docs.aws.amazon.com/pdfs/apigateway/latest/developerguide/apigatewa

y-dg.pdf.

[31] A. S. Gillis, Rest api (restful api), Accessed: May 23rd 2023, 2020. [Online]. Available: https:

//www.techtarget.com/searchapparchitecture/definition/RESTful-API#:∼:text=A%5C%

20RESTful%5C%20API%5C%20is%5C%20an,deleting%5C%20of%5C%20operations%5C%

20concerning%5C%20resources..

[32] Amazon Web Services, Amazon DynamoDB Developer Guide, Accessed: May 23rd, 2023. [On-

line]. Available: https://docs.aws.amazon.com/pdfs/amazondynamodb/latest/developerguid

e/dynamodb-dg.pdf.

[33] Amazon Web Services, What is Amazon S3? Accessed: May 23rd, 2023. [Online]. Available:

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html.

[34] npm, bcrypt.js, Accessed: May 23rd, 2023, 2017. [Online]. Available: https://www.npmjs.com/

package/bcryptjs.

[35] JSON Web Tokens, Introduction to JSON Web Tokens, Accessed: May 23rd, 2023. [Online].

Available: https://jwt.io/introduction.

[36] React Router, Main Concepts, Accessed: May 22, 2023. [Online]. Available: https://reactrout

er.com/en/main/start/concepts.

[37] Mocha, Accessed: May 21, 2023. [Online]. Available: https://mochajs.org/.

[38] Chai, Accessed: May 21, 2023. [Online]. Available: https://www.chaijs.com/.

[39] Axios-mock-adapter, Accessed: May 21, 2023. [Online]. Available: https://www.npmjs.com/

package/axios-mock-adapter.

[40] MyTimeZero, TimeZero Navigation, Accessed: May 8, 2023. [Online]. Available: https : / /

mytimezero.com/about.

[41] F. Warmerdam and E. Rouault, gdal grid, Accessed: May 15, 2023. [Online]. Available: https:

//gdal.org/programs/gdal grid.html.

55

https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://docs.aws.amazon.com/pdfs/lambda/latest/dg/lambda-dg.pdf
https://docs.aws.amazon.com/pdfs/apigateway/latest/developerguide/apigateway-dg.pdf
https://docs.aws.amazon.com/pdfs/apigateway/latest/developerguide/apigateway-dg.pdf
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API#:~:text=A%5C%20RESTful%5C%20API%5C%20is%5C%20an,deleting%5C%20of%5C%20operations%5C%20concerning%5C%20resources.
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API#:~:text=A%5C%20RESTful%5C%20API%5C%20is%5C%20an,deleting%5C%20of%5C%20operations%5C%20concerning%5C%20resources.
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API#:~:text=A%5C%20RESTful%5C%20API%5C%20is%5C%20an,deleting%5C%20of%5C%20operations%5C%20concerning%5C%20resources.
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API#:~:text=A%5C%20RESTful%5C%20API%5C%20is%5C%20an,deleting%5C%20of%5C%20operations%5C%20concerning%5C%20resources.
https://docs.aws.amazon.com/pdfs/amazondynamodb/latest/developerguide/dynamodb-dg.pdf
https://docs.aws.amazon.com/pdfs/amazondynamodb/latest/developerguide/dynamodb-dg.pdf
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://www.npmjs.com/package/bcryptjs
https://www.npmjs.com/package/bcryptjs
https://jwt.io/introduction
https://reactrouter.com/en/main/start/concepts
https://reactrouter.com/en/main/start/concepts
https://mochajs.org/
https://www.chaijs.com/
https://www.npmjs.com/package/axios-mock-adapter
https://www.npmjs.com/package/axios-mock-adapter
https://mytimezero.com/about
https://mytimezero.com/about
https://gdal.org/programs/gdal_grid.html
https://gdal.org/programs/gdal_grid.html

[42] Electron, What is electron? Accessed: May 22, 2023. [Online]. Available: https://www.electr

onjs.org/docs/latest.

[43] Anubhav Omar, Building an App with Electron React, Accessed: May 23rd, 2023, 2023. [On-

line]. Available: https://www.scaler.com/topics/react/electron-react/.

[44] Distinguished, 3rd party tools and libraries, Accessed: May 22, 2023. [Online]. Available: https:

//distinguished.io/blog/third-party-software-pros-and-cons.

[45] Cambridge University Press, Polygon definition, Accessed: May 17, 2023. [Online]. Available:

https://dictionary.cambridge.org/dictionary/english/polygon.

[46] W3Schools, Interpolation, Accessed: May 17, 2023. [Online]. Available: https://www.w3schoo

ls.com/python/scipy/scipy interpolation.php.

[47] QGIS, Raster data, Accessed: May 17, 2023. [Online]. Available: https://docs.qgis.org/3.28/

en/docs/gentle gis introduction/raster data.html.

[48] Britannica, Graphical User Interface, Accessed: May 22, 2023. [Online]. Available: https://

www.britannica.com/technology/graphical-user-interface.

[49] P. Magazine, Definition of bucket, Accessed: May 22, 2023. [Online]. Available: https://www.

pcmag.com/encyclopedia/term/bucket.

[50] A. W. Services, Application Programming Interface, Accessed: May 22, 2023. [Online]. Avail-

able: https://aws.amazon.com/what-is/api/.

[51] GeeksforGeeks, Hypertext Transfer Protocol, Accessed: May 22, 2023. [Online]. Available: htt

ps://www.geeksforgeeks.org/http-full-form/.

[52] GeeksforGeeks, White Box and Black Box testing, Accessed: May 22, 2023. [Online]. Available:

https : / /www .geeksforgeeks . org /differences - between - black - box - testing - vs - white - box -

testing/.

[53] P. Magazine, Comma-Separated Values, Accessed: May 22, 2023. [Online]. Available: https:

//www.pcmag.com/encyclopedia/term/csv.

[54] Fileformat, Keyhole Markup Language file, Accessed: May 22, 2023. [Online]. Available: https:

//docs.fileformat.com/gis/kml/.

[55] F. Warmerdam and E. Rouault, Geospatial Data Abstraction Library (GDAL) - GeoTIFF,

Accessed: May 14, 2023. [Online]. Available: https://gdal.org/drivers/raster/gtiff.html.

56

https://www.electronjs.org/docs/latest
https://www.electronjs.org/docs/latest
https://www.scaler.com/topics/react/electron-react/
https://distinguished.io/blog/third-party-software-pros-and-cons
https://distinguished.io/blog/third-party-software-pros-and-cons
https://dictionary.cambridge.org/dictionary/english/polygon
https://www.w3schools.com/python/scipy/scipy_interpolation.php
https://www.w3schools.com/python/scipy/scipy_interpolation.php
https://docs.qgis.org/3.28/en/docs/gentle_gis_introduction/raster_data.html
https://docs.qgis.org/3.28/en/docs/gentle_gis_introduction/raster_data.html
https://www.britannica.com/technology/graphical-user-interface
https://www.britannica.com/technology/graphical-user-interface
https://www.pcmag.com/encyclopedia/term/bucket
https://www.pcmag.com/encyclopedia/term/bucket
https://aws.amazon.com/what-is/api/
https://www.geeksforgeeks.org/http-full-form/
https://www.geeksforgeeks.org/http-full-form/
https://www.geeksforgeeks.org/differences-between-black-box-testing-vs-white-box-testing/
https://www.geeksforgeeks.org/differences-between-black-box-testing-vs-white-box-testing/
https://www.pcmag.com/encyclopedia/term/csv
https://www.pcmag.com/encyclopedia/term/csv
https://docs.fileformat.com/gis/kml/
https://docs.fileformat.com/gis/kml/
https://gdal.org/drivers/raster/gtiff.html

8 Appendix

8.1 Nomenclature

This section contains definitions and technical terms used throughout the paper.

• A polygon is a geometric shape with straight sides and enclosed by a closed path. The sides

of a polygon are always straight [45].

• Interpolation is a technique used to estimate or predict values within a given set of data points

based on the known values. It involves filling in the gaps between the existing data points to

create a continuous function or curve [46].

• Raster data is a type of geospatial data that represents information in a grid or cell-based

format. Each cell corresponds to a specific location on the Earth’s surface [47].

• GUI stands for Graphical User Interface. It allows users to interact with a computer system

or software application through visual elements. GUIs provide a more intuitive and efficient

way for users to interact with a program [48].

• A bucket is a concept that refers to a container or directory used to organize and store files or

objects. Buckets are typically associated with object storage systems, such as cloud storage

services [49].

• API stands for Application Programming Interface. It is a set of rules, protocols, and tools

that defines how different software components or systems should interact with each other [50].

• HTTP stands for Hypertext Transfer Protocol. It is an application-layer protocol used for

communication and data transfer on the World Wide Web. HTTP defines the format and

rules for how web browsers, web servers, and other web clients communicate with each other

to request and deliver web resources [51].

• Whitebox testing, is a testing technique where the tester has knowledge of the internal workings

of the system being tested. The tester has access to the source code, architecture, and design of

the software. The primary objective of whitebox testing is to identify defects in the software’s

internal logic, code structure, and design [52].

• Blackbox testing is a software testing technique that involves testing the functionality of a

system without any knowledge of its internal workings. The testing is conducted based on

inputs and outputs and the expected behaviour. The objective of blackbox testing is to

identify defects in the system’s functionality, including its user interface, database, network

communication, and other external interfaces. [52].

• CSV (Comma-Separated Values) is a plain text file format commonly used for storing and

exchanging tabular data. In a CSV file, each line represents a row of data, and the values

within each row are separated by commas [53].

• A KML file (Keyhole Markup Language file) is an XML-based file format used to display

57

geographic data. KML files contain information about geographical features, such as points,

lines, polygons, and images.[54].

• A GeoTIFF file is a Tagged Image File Format (TIFF) file that contains both image data and

additional geospatial metadata, allowing the image to be located and aligned in a geographic

space. The metadata includes information on the coordinate reference system , projection,

extent and pixel resolution [55].

8.2 PyInstaller Command

Here is the PyInstaller command to create the executable for the KML Creator. Please note that

”path/to/” is used for file and directory paths instead of the actual path, as it represents the paths

from the computer where the command was executed.

pyinstaller --noconfirm --onedir --windowed

--name "KML Creator" --hidden-import "geopandas"

--paths "path/to/mussel_data/venv/Lib/site-packages" --hidden-import "osgeo"

--paths "path/to/mussel_data/venv/Lib/site-packages/osgeo"

--paths "path/to/mussel_data/venv/Lib/site-packages/osgeo_utils"

--hidden-import "gdal" --hidden-import "tkinter" --hidden-import "tkinter.ttk"

--hidden-import "tkinter.colorchooser"

--add-data "path/to/mussel_data/src/controller;controller/"

--add-data "path/to/mussel_data/src/model;model/"

--add-data "path/to/mussel_data/src/view;view/"

--hidden-import "geopy" --hidden-import "geopy.distance"

--hidden-import "simplekml" --hidden-import "osgeo_utils"

--hidden-import "osgeo_utils.gdal_polygonize"

--add-data "path/to/mussel_data/src/presenter;presenter/"

--add-data "path/to/mussel_data/temp_files;temp_files/"

--add-data "path/to/mussel_data/temp_files/app.log;temp_files/"

"path/to/mussel_data/__main__.py"

58

8.3 KML Creator File Structure

In this section we examine the file structure of the Mussel Data Client. The client has the following

directories, which we outline here and will then examine in turn.

mussel data
README.md
LICENSE.txt
requirements.txt

config.py

setup.py

main .py

temp files
saved state.json

app.log

binned shp file

csv files
kml files
polygon shp files

shp files

tif files
tests

tests backend.py

tests.log

context
bins for testing.py

expected.kml

expected.tif

expected bin.ship.zip

expected polygons.shp.zip

test.csv
src

init .py

controller
init .py

controller.py

model
init .py

bin.py

preper.py

runner.py

view
init .py

gui button frame.py

gui console.py

gui header.py

gui main.py

gui settings.py

gui submit.py

gui table.py

gui table row.py

gui table row fields.py

59

The root folder contains the following files:

File name Description
README.md Instructions about how to run the app
LICENSE.txt Open-source license of the app
Requirements.txt List of dependencies
config.py Global variables for the configuration of the app’s backend
setup.py setup.py configures project packaging, distribution, and installation
main .py The main .py file is the entry point of our app

temp files Contains temporary files
test Contains files and directories for testing
src Contains the source code for the project

The temp files folder contains the following files and directories.

File name Description
saved state.json Saves last state of application
app.log Logs of applications
binned shp file Contains the binned shape files
csv files Contains temporary CSV files
kml files Contains temporary KML files
polygon shp files Contains temporary polygon SHP files
shp files Contains temporary SHP files
tif files Contains temporary TIF files

The test folder contains the following files and directories.

File name Description
test backend.py This script tests class and method functionality.
tests.log Logging of tests
context Contains files for testing purposes

The context folder contains the following files.

File name Description
bins for testing.py Bin objects are defined for testing the functionality of the class.
expected.kml The expected KML file outcome
expected.tif The expected TIF file outcome
expected bin.shp.zip The expected SHP file outcome
expected polygons.shp.zip The expected polygon SHP file outcome
test.csv A CSV file for testing

The src folder contains the following files and directories.

File name Description
init .py Used for packaging purposes

controller Contains the necessary files for the controller module
model Contains the necessary files for the model module
view Contains the necessary files for the view module

60

The controller folder contains the following files.

File name Description
init .py Used for packaging purposes

controller.py Manages GUI state and facilitates communication
between the view and the model

The model folder contains the following files.

File name Description
init .py Used for packaging purposes

bin.py Represents a range of values with associated attributes
for grouping and visualisation purposes.

preper.py Creates SHP files, calculates data-set dimensions, and handles data conversions.
runner.py Handles data processing tasks, like SHP creation,

KML generation, interpolation, etc.

The view folder contains the following files.

File name Description
init .py Used for packaging purposes

gui button frame.py A frame with buttons for the GUI
gui console.py A frame the a GUI that contains a console

for users to view the program’s output
gui header.py The header frame in the GUI
gui main.py Main GUI window with CSV file handling,

table creation, data submission, etc.
gui settings.py A frame with stored settings
gui submit.py Collects data from GUI and submits it to the controller
gui table.py A frame containing a table for the GUI.

Allows adding, removing and retrieving data.
gui table row.py Represents a row in the table for the GUI
gui table row fields.py Defines custom widget classes for enhancing GUI table rows

61

8.4 Sample KML

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2"

xmlns:gx="http://www.google.com/kml/ext/2.2">

<Document id="1">

<Placemark id="3">

<Style id="8">

<PolyStyle id="9">

<color>ff9d96d#4</color>

<colorMode>normal</colorMode>

<fill>1</fill>

<outline>0</outline>

</PolyStyle>

</Style>

<name>MultiPoly</name>

<MultiGeometry id="2">

<Polygon id="4">

<outerBoundaryIs>

<LinearRing id="6">

<coordinates>

8.96033868454661,56.975680617394964,0.0

8.9592654407161,56.975499745798324,0.0

8.958728818800846,56.97577105319328,0.0

8.957521419491524,56.975499745798324,0.0

</coordinates>

</LinearRing>

</outerBoundaryIs>

</Polygon>

</MultiGeometry>

</Placemark>

</Document>

</kml>

62

8.5 Mapping Client File Structure

In this section, we examine the file structure of the Mapping Client. The client has the following

directories, which we outline here and will then examine in turn.

mapping client
.babelrc
.env
package.json

public
index.html

src
App.js

Client.js

index.css
index.js

LeafletMap.css

Login.js

Register.js

route
PrivateRoute.js

PublicRoute.js

service
AuthService.js

ValidationService.js

test
registerValidation.test.js

registerApi.test.js

User authentication
index.js

package.json

service
login.js

register.js

verify.js

utils
auth.js

util.js

Generate presigned URLs
index.js

package.json

63

The Mapping client folder contains the following files and directories.

File name Description
.babelrc Babel set-up for our unit and integration tests
.env Used to store secret variables, such as API Keys and endpoints
package.json Node.js relevant file for managing metadata and dependencies of the application
public Directory that contains the files served directly by the server
src Directory where our source code is stored
test Directory where out unit and integration tests are stored

The public folder contains the following files.

File name Description
index.html Main HTML file for the Mapping Client,

which render the contents of our React component

The src folder contains the following files and directories.

File name Description
App.js Main component of the Mapping Client,

responsible for rendering based on routing
Client.js The component which holds the contents of our client page
index.css The style-sheet for the whole Mapping Client
index.js Main entry point of the application responsible for rendering App.js
LeafletMap.css The style-sheet for our Leaflet map
LeafletMap.js Leaflet component initialising the map

and make API calls to fetch presigned URLs for KML files
Login.js The component which holds the contents of our Login page
Register.js The component which holds the contents of our Register page
route Directory that contains our routing components
service Directory that contains our service functions

The route folder contains the following files.

File name Description
PrivateRoute.js The component that checks if a user should have access to our private routes
PublicRoute.js The component that checks if a user should have access to our public route

The service folder contains the following files.

File name Description
AuthService.js Module which contains functions for managing the user session
ValidationService.js Module which contains functions for user input validation

The test folder contains the following files.

File name Description
registerValidation.test.js Unit tests of the validation functions used during registration
registerApi.test.js Integration tests of registration and login requests

64

The User authentication folder contains the following files and directories.

File name Description
index.js Entry point for our API, which routes incoming requests

to the appropriate service
package.json Node.js relevant file for managing metadata

and dependencies of the Lambda functions
service Directory that contains our main Lambda functions for authentication
utils Directory that contains our utility functions for authentication

The service folder contains the following files.

File name Description
login.js Lambda function to handle user login
register.js Lambda function to handle user registration
verify.js Lambda function to handle token verification

The utils folder contains the following files.

File name Description
auth.js Functions to generate and verify tokens
util.js Function to build response for API Gateway

The Generate presigned URLs folder contains the following files and directories.

File name Description
index.js Lambda function listing all objects and returns presigned URLs
package.json Node.js relevant file for managing metadata

and dependencies of the Lambda function

65

8.6 Interview with Bjørn from SeaVis

Thomas: This is my, uh, my fellow group member Emil.

Emil: Hi.

Thomas: Um, yeah, thanks for, thanks for meeting, but today we’re just, just a short meeting, um,

where we could show you the software we’ve created and also, um, Emil has some questions about,

um, Seavis as a company cause, um, so perhaps that sounds okay. We can Yeah. Get started with

you, Emil.

Emil: Yeah. So first we’re just going to start by asking some very simplistic questions about Seavis,

just, uh, for the report part, so we have some sort of scourses. Um, and first, if you just briefly tell

us, uh, what is Seavis?

Bjørn: Um, actually right now it’s not a company, uh, because it hasn’t been founded yet. Um, but

we are quite certain of the name and, uh, going to found it here in August this year. Um, so the

plan is that we make the drone and then we take some pictures of the sea floor, and then we have,

uh, a machine learning algorithm to map the biomass on the pictures. And from that, we would like

to have these data maps that you have been working on. So we expect that we can generate some

kind of data that looks like the one that we have, uh, given you to work on. And then we are going

to sell, like in the beginning, the blue muscle maps to the fishermen’s organization, “Blue muscle

fishers organization” in Limfjorden.

Emil: Okay. Great. Is there any mission for expansion or is it, is it primarily gonna be in Limfjorden?

Bjørn: We start Limfjorden because we have a customer there. But we plan to expand to the rest of

Denmark, uh, like to start up other, uh, other places in Denmark in 2024. And then we would like

to include like all relevant areas in 2025, and then as well expand beyond the borders at that time.

But it also depends on how many whistles we can have, because one thing is the drone, the drone is

quite cheap. Uh, and then we need a boat to drag the drone. Um, and then we would like to drag

about 6 or 10 drones at a time. And each drone is going to cost about 70,000 dkk to produce, and

we expect our boat to cost about 100 to 150 thousands dkk to repurpose, an old fishing boat.

Emil: So if you could tell us a little bit about the history of seas. How did, how did it start? Um,

Bjørn: Um, it started out by, Claus had have a contact, um, with some ma marine biologist, uh,

doing arctic, research at the North Pole. And they were mapping macro seaweed. Um, and there,

what they did was that, I think what they did was that they took a door from the boat and then

attached barrels to it, and then dragged that after the boat with a camera on it. And then Claus

was like, we can do this better. And then they made something. and then that was an older version.

I can see if I can find a picture if you want to see it.

66

Emil: Yeah, that would be great. And also just, Claus, do you have his full name?

Bjørn: Uh, Claus Melvad.

Emil: Okay, great.

Bjørn: Yeah, I will just share some of it on the screen, because if it’s the business part, this might

make more sense because we actually have a presentation on the business part.

Emil: Okay.

Bjørn: So like this, we can see it. Yeah. So, um, this is the problem. right now, the fishermen is I’m

doing trials, um, and there’s a growing market for the protein, uh, which these, uh, muscles and,

and all starfishes are really like, uh, rich in protein. Uh, um, and then the trawlers are destroy the

habitats actually. Um, so we want to do is that we want to limit the, uh, amount of the area that

they, they scrape and we want to Yeah. To help them catch them at the right time. Uh, there’s no

pictures of the old one. No, that was a bad one. Nope, just a sec. Yeah, here we go. Yeah, this is,

the old drone

Emil: Great.

Bjørn: You see it?

Emil: Yeah.

Bjørn: So this one was, uh, built for, I think this was actually built for the artic research and then

repurposed for muscle, uh, pictures. Um, and then I heard about it because, uh, I had a mechatronics

subject at, uh, course at Aarhus university, and they pitched this idea and I was like, yeah, it would

be nice to do something that actually like would amount or something and with the possibility to,

to be part of a startup. Uh, so in our, in that course, we went and we built that one. which is, which

is actually the, like a bigger version of this one. So this was like a prototype test, uh, for composite

on, on that.

Thomas: Have you been out in the swimming pool trying to pull, pull the prototype through with

a string and..

Bjørn: this one?

Thomas: Yeah.

Bjørn: Uh, not this one, but we did that with the next one. Ah, I don’t know if we have pictures of

that one. Oh, yeah, there’s picture of that one there. And that is build up on a lot of tests, uh, in,

in a swimming stadium. Um, and then they, they ended up with this design For the final one. And

this, this is the one that we are billing on right now. And now we are doing the next iteration, uh,

to make it more eco-friendly and easier to produce. Okay. So, yeah, and here you can see the, the

67

people in the company. So we have claus Melvad uh, that is the ceo, and then we have, uh, Matt

that, you know Yeah, right. Uh, he’s for business development. And then yeah, we have Nick that

he did the first one that I showed you up here. He built that one. Um, and then we have Henrik,

he is a fisherman. Yeah. And then we have me and Jalte and he normally is sitting next to me and,

and doing a lot of, um, the mechanical stuff and electronics. And I do more of the, what you say,

the organizational part of the work and like planning. And I also do all the software.

Emil: Okay.

Bjørn: Yeah. Does that answer your question?

Emil: It does, yeah. I think we have, uh, the things we need for the report now, so Yeah. That’s

great. Unless you have something to add, Thomas?

Thomas: Just add a more curiosity question. You said that that, that a one of these boats was

aiming to pull was said two to six drones behind it, and those drones are each gonna be a hundred

meters apart from each other. So then the whole

Bjørn: No, no, no, no.

Thomas: Okay.

Bjørn: Uh, in that case, we would just, uh, have a way wider picture. Yeah. Okay. Um, but you

are right, it’s going to be really wide because, uh, they are 1.2 meters in width. So to have the 10

that we will, that we aim for, we are going to have like, we are going to have like a band of drones

for eight meters on each side of the boat or something like that. Right. So that would be like 20

meters in width that we are going to, to take.

Thomas: So you’re covering with 20 meters in width. You’re co you’re covering that with eight

drones with I think that would be 10, but yeah, 10 drone. Okay. So it’s actually very, very detailed.

So the data set that we got, that was the sort of these columns, almost like these vertical lines with,

uh, which are a hundred meters apart, but actually in, in practice these lines will be a lot closer

together.

Bjørn: Well then we will have, like you would have 10 lines that are really close.

Thomas: Yeah.

Bjørn: And then you will have a hundred meters, and then you’ll have 10 lines that are really close.

Thomas: Okay. Yeah. Uh, alright. Why, why the extra drones? What, what, what benefit does

that give you? Why not just one?

Bjørn: It’s just to have more coverage Because it’s going to be a sale point on like, it’s going to be

a negotiation with the customer of how many percentage of the area that we cover that we actually

68

have like documentation of.

Thomas: Right. What stops you putting the drones out really wide then? Like saying the boat like

50 meters on either side. Like is it the construction of the drones? They can’t, cause obviously I

must have, there must be some sort of steering issues there, right? Because you’re pulling the boat

at an angle to the direction of the drone. You want the drone to go.

Bjørn: Uh, actually the only thing that stops us is, uh, the array system in some way. And then

there is something that is, uh, the drag force Yeah. And the construction of the brick that we drag

the drones with. Right. If you get it. Yeah. Yeah. Okay. I see. Because there’s, um, there’s a lot

of force in, in this tracking things through the water.

Thomas: Right Yeah. Okay. Nice. Um, perhaps we can move on now to showing you the software.

And we have managed to package the software down into EXE file, which you can run for Windows,

uh, just by clicking on it. Um, we’re very happy about that because of the whole process of

installation. Uh, the, the dependencies for the software is quite, uh, quite a little bit involved. So

we’re happy that we can package it down into this packaging. We can send that to you next week

and where you can have like a play around with the software yourself and maybe give us some, we,

we’d appreciate some, maybe a little bit of written feedback on it to include in the report or, or, or

just, uh, another, another call where you can tell us about what you think.

Thomas: Um, but for now, maybe we can just show you the software and get you just some initial

thoughts about it, if you have any immediate ideas that we could make improvements on. And then

we can go away and make those changes before we send you the EXEfile. Um, so here we go. There

we go. Can you see my screen?

Emil: Yes.

Bjørn: Yep. Yeah.

Thomas: Good. All right. So we start the thing off and it opens up like this, just a small window

inviting you to open up a CSV file’s, open up this one. And we have this pop up here. We have

these, this area here corresponds to like the bins that we’ve spoken about. So from zero to 20, for

example, 20 to 40, 40 to 60 muscle density or size. Yeah. And the CSV file, you choose, uh, the,

the columns of that get populate this list here.

Bjørn: Okay.

Thomas: Of the target columns. So you might also choose like the, the raw data set you sent us

has, you know, many other columns. Yeah. Um, and then I think I’ll just go with this one slightly

smaller data set. Um, and then you can put a description in here. I don’t know, um, test. And let’s

say from zero to 20 and then select a color and opacity. So how transparent,

69

Bjørn: Hmm.

Thomas: The layer. The layer should be, um, we can add another row if you like. Um, for the next

bi, uh, select all deselect all then select columns to remove. And when you’re ready, when you, and

when you’ve kind of put all your bins in, look at the settings down here. Um, Pixel size is, we’ll

put a bit more details here about what these actually mean. Uh, but pixel size, meaning in meters,

how, how big should one pixel be?

Bjørn: Hmm. So yeah,

Thomas: At the moment this is one pixel for, for 10 meters, um, radius width. This is the, the,

the search ellipses we use for the algorithm. And at the moment it sets a 60, uh, we in width, um,

10 is, is in height. Is is good. Right. To minimize the, in the, in kind of inaccuracy, we, we found

that it needs to be above 50, right? Because otherwise we’ve got a hundred meters between each

row, each column. You’re not gonna get proper interpolation unless it’s over 50. So 60 is just what

we’ve been testing it with. And then smoothing is, um, you know, these after inter interpolation,

uh, the resulting rester image file is polygon. So it’s made into a vector vile with these shapes, these

polygons, these fields. And they can have a certain amount of smoothing. So some of the edges can

be more kind of, um, simplified, like some of the sharp edges can be removed.

Bjørn: Mm.

Thomas: And that’s also in meters. But, uh, we’ll put a bit more information here about, as I said,

what these, um, what these fields actually mean. And that could just be like a little pop-up box

that comes up to show, show more information about what What they mean.

Bjørn: yeah. Um,

Thomas: then once all that’s looking good, we can just go submit and it’ll, oh, well it’s not doing

anything moment at the moment because it’s not selected. It’s like that.

Bjørn: Then what happens if you have two columns?

Thomas: Two columns? Yeah. So let’s do that. So density and size. Oh, it’s there. Yeah. Also 20.

Just spink like that. Like this, yeah. Then submit, choose a directory to save the KML files to this

will be fine. And then here is where the status see the status.

Bjørn: Hmm.

Thomas: So, this is the small data set we than the one you sent. It’s just covering this area, Little

process bar with the spinning spinner, ¡laugh¿ ¡laugh¿. And I can hear my computer starting to

pick up, that the fans are starting to turn on there. Uh, yep. So inspiration polygon organization

and then creating the KML files, um, and then de deleting the temporary files and then done. Hold

70

on. Yeah, there’s a few things that need to be repetition here, but, uh, but it does say here that

the selection that we made zero to 20, there are no, there’s, there’s nothing in that bin. So it just

skipped and it didn’t make any KML files in the end. You can see here bin bin one is empty, ignoring

bin two is empty ignoring. Yeah.

Bjørn: Hmm.

Thomas: So we wouldn’t have, we didn’t get anything out of that. But uh, when you do select bins,

which you know, actually have, uh, content, um, then you should get something which looks like,

you know, these, which you’ve, we’ve sent you before. Yeah. This sort of thing. Um, and this is

with the 60 by 60 radius. 60 meter by 60 meter radius. And this is with like the, this, the smoothing

is not optimal here. We still need to do some work on that, cuz you can see it’s quite kind of jagged,

the edges. Um, and you can, I mean you can really see that 60 by 60 cuz you can almost see like

the circles, like the circles almost, you know, like one circle here, another circle here.

Bjørn: Yeah.

Thomas: But this is, yeah, basically the output, and you’ve seen this already. Yeah. Um, this is

with a 60, 60, this is with a 60 10, so 60 meters wide, 10 meters height radius and with some different

smoothing. Um, that’s another one. And these all were the opacity hundred. So I, it, it would be

better ready to have the opacity like as or 80. Right. So then you can see like the layering Better.

Bjørn: Yeah.

Thomas: Um, and yeah, and we, we we’re quite confused about this data, like how it’s in these, uh,

these perfect, uh, horizontal lines. Uh, you said this is fabricated, like made up data? Yeah. Yeah.

So I guess this is a copy paste, so that’s why we get these, these Yeah. Horizontal. Yeah.

Bjørn: Have you seen the, the raw data, like how it’s built?

Thomas: Um, what I’ve, I mean, I’ve looked at the data set sent us, which is called raw data version

one thing. Yeah. Um, but oh, yes. In a setting, I just real, I realize a setting that we need to add

here is, uh, angle. So at the moment, the, you know, the search lips both has width and height, but

also angle. So if you were to have to do these. At the moment, everything’s vertical, like all the

lines that you sent us. But if they were at an angle, then you’d want the search lip sources to be at

that the same angle, right?

Bjørn: Yeah. So yeah. But in reality they will be, they will not be like, I don’t think they’re going

to be like we have a grid of straight lines. Hmm. It’s going to be, we have a line here.

Thomas: Yeah.

Bjørn: And then we have a line with a little angle and then Yeah. Because everything moves in the

71

real world. Right, right. Um, yeah.

Thomas: So there could be, there were, there were live parallel with each,

Bjørn: we will try to make that, but it’s, yeah, it will not be completely straight.

Thomas: No, of course not. No.

Bjørn: Well, we hope, we hope to that, you know, using, having access to these settings would help

you kind of account for different, you know, you could lay around and see what works.

Thomas: Um, yeah. So anything, does anything stick out to you as needing, needing attention?

Bjørn: Uh, not really.

Thomas: Mm-hmm. um, either with, either with the software or with the, the result.

Bjørn: Yeah. I think this, the result looks stranges, but I think that’s because of the way I made

the data set.

Yhomas: Mm-hmm.

Bjørn: And I think a lot of it will be like, a lot of the issues that I have with the result is because

of the data set. Right. More than it’s because of your program. Um, because yeah.

Thomas: Yeah, we’ve also struggled with this, these lines. Cause we, it does feel very artificial for

us. Um, we’re also going to test in within the next week test the, the data set you, you sent us, but

with some noise added to it. So we’re gonna take the, the different points then like introduce a bit

of noise, so the shift around a bit within a a within a ellipse, I might reduce something interesting

too. Good. All right. And do you think that this seems okay to like reasonably easy to work with

this software?

Bjørn: Yeah. Yeah. I was thinking like, would it be possible to have an indication of the lower

bound and the upper bound in the dataset when you, uh, put in the row?

Thomas: Yeah. So at the moment, this description box does nothing outside of this software. It

doesn’t do anything to the KML file that you get at the end at this box here. But what I think is

what is possible is that, um, when you click on this, and I think this is also true in time zero, when

you click on the layer, you get this box with, uh, at the moment it’s just a multi polygon, but you

can customize what goes in here. So it might be possible to put the description in there and then

like bin, bin information.

Bjørn: Oh, that was not, uh, what I was talking about. Yeah. So if you look at the software you

have, yeah. Uh, and here we have the density. Yeah. And especially with the density that I know

this is going to be, I would like this to be some kind of percentage, I think. Hmm. We have put in

72

the data, right.

Thomas: It’s, it could be percentage. I haven’t seen any values above a hundred. Yeah.

Bjørn: Um, but it, it should be in the top column of the, of the data set that I sent you.

Thomas: Yeah. I can try and open that up.

Bjørn: Um, I have it here, so Yeah, no, that is, uh, uh, kilograms per square meter. Yeah. But it

could also be have been, um, it could have been percentage. And if it’s percentage, then again, the

question is, is it, uh, between zero and one? Yeah. Or is it between zero and 100? So if you, when

you get the data set loaded into it could get an indication of what are the values for like lower and

upper value. Ah-huh. Okay. I think that would be nice.

Thomas: Yeah. So if it’s, if there’s no, if it’s, yeah, if there’s no value above one, right. Then it’s

percentage, I guess if zero, for example, 0.5 is 50 percent, is that what you mean?

Bjørn: Or, yeah. So is that when, when I, when I, when I choose a tag of column Yeah. Then it, it

tells me that, well, the smallest number is this and the largest number is this. Yeah. Uh, in relation

to place in my lower and upper bound. But I think it’s a nice to have

Thomas: Yeah.

Bjørn: Not a need to have.

Thomas: Right. Right. Okay. Cause then, then you could potentially have the density column,

which is related, which is a percentage, and then the size column, which is not a percentage. So

you’d have to have, be able to accommodate both. It would be easier if they’re all percentages.

Right. Cause then we could just change the, the header to a little percentage sign here. Um, yeah,

just wondering how, like in a term, in user interface sense, how do we make it so that each row can

be, have either be a percentage or just the number?

Bjørn: Um, um, might be well as well if it’s percentage, I, I don’t, I don’t care if it’s between, uh, if

the percentage is between one and a hundred and zero and a hundred or is be, or is it between zero

and one?

Thomas: Right.

Bjørn: Uh, it’s just that if, if this, like if next to the lower bound, there was like a little grade out

box where I could see this is the lower bound, this is the lowest, uh, value in the data set, that

would be enough. Okay. Yeah. Because then I can look at the number and I can see like, okay, if

it’s between everything is less than one, it’s, I know kind of the scale.

Thomas: How about if it was, so you can, you can, for the, all these fields that you see here, you

can give them default values or you can give them like a, um, like a grade out default value. So if

73

you, if there’s no value here, it would in gray just give whatever text you want. Yeah. So here you

could have as a default when you add a add a new row, it could have like, okay, BM dense, and then

here it would, it would give in like a grade out font, uh, text what the lower bound is like, what the

lowest, lowest minimal value is. Maybe that would be a way to do it.

Bjørn: That would be perfect.

Thomas: Yeah. Yeah. Okay.

Bjørn: But again, it’s a, it’s a, it’s a nice to have. It’s not a need to have because Sure. Of course.

I should also be aware of like how the data that I put into it is built up. Yeah. But Okay.

Thomas: No, that’s, I think we can do that probably, uh, at the moment we’re spending a lot of

time just testing it, trying to make it like resilient and bug free.

Bjørn: Yeah. So, yeah. Um, yeah. And I think it looks great. Good. What is the language that

you wrote it in?

Thomas: It’s, um, so Python,

Bjørn: um, okay.

Thomas: So yeah. Yeah. Using a, a library called the, the interfaces library called to kinter. Yeah.

That’s good. Yeah. You, you have some programming experience. I, I understand all.

Bjørn: A little. A little. Yeah.

Thomas: But you know, the package that we, we delivered to you will be, will have all the Python

files in it. Um, yeah. So, and as well as the EXE files. So any future development can happen quite,

quite easily. Yeah. Good. All right. Uh, so we’ll send you the EXE file next week and it’d be great

if you could have a, have a play with it and see what you think. Yeah,

Bjørn: Yeah. If you would, uh, like to see it, I can show you the Excel file that I used.

Thomas: Yeah.

Bjørn: Because this is the data that I sent you. Right. One second. This is what I sent you. that

is built on this.

Emil: Oh, okay.

Bjørn: That doesn’t look like it’s in lines. That’s strange. No, but the thing is that this is squid

together. Yeah. So every column here is super, is uh, 10 times the width. Ah, yeah. Um, right. But

still, because these are like, yeah, these are like, uh, how you say, these are the one that shift with,

uh, a hundred meters. Yeah. Each column is after meter shifts with one meter.

Thomas: Yeah.

74

Bjørn: Apart. What is the right here? That is 17 pixels. Uh,

Thomas: I don’t understand how you’re running the nexel without a crashing. ¡laugh¿ the high half

a million data points like Excel should be crying. ¡laugh¿.

Bjørn: It did. Yeah. ¡laugh¿. So this one should be 700. Ah-huh. Yeah. So that is the data set

that you, that you’re looking at. Yeah. Yeah. Okay. Well, I just think it’s easier to figure out when

it’s like this.

Thomas: It is, yeah. And I’m still, I, I’m a little bit still bit puzzled why it doesn’t look more like

lines. Um, but yeah. Okay.

Bjørn: Well we can look at the muscle density. You looked at the muscle density, right?

Thomas: Yeah. Yeah. And size, yeah.

Bjørn: Basically, yeah. So, and I tried there because it’s much wider than in real life. I, I also try

to make these one like narrowed down. Yeah. So that would, they will always be longer than wider.

Okay. Uh, to try to get something that was kind of round, but yeah. I don’t know why it is like,

like you are also saying like why it is like these lines.

Thomas: Yeah. It’s weird. Yeah. Cause we, we’ve, we’ve kind of confirmed this in various ways that

it, that the data set is like that because we’ve done it both with the polygon, like the interpolation

algorithm, but we’ve also just broken the data set into bins and then plotted them onto a graph

simply. And we’ve also noticed the lines Yeah. For each bin are there. So it’s, yeah. Confusing.

Another thing which just, just as you’re showing it as the data set there, something we’ve, been a

bit of a struggle is the column names. Um, you know, computer programs don’t, they don’t really

like, um, brackets and dashes, hyphens and things, um, spaces and, this is likely to be how it’s gonna

be? like with, with these column names. Is this similar to the

Bjørn: No, the column names are probably going to be different. Different each time.

Thomas: Okay.

Bjørn: not each time, but it’s probably going to be computer friendly.

Thomas: Okay.

Bjørn: So, it’s going to be like case no strange letters. Yeah. Uh, no signs. Um, but then I would,

yeah, I think I would just like destroy them when they came into the program. Like remove them.

Thomas: Right. You can and yeah, because at the moment we’ve got it set up to, to, you mean you

can, the target column can be anything, right. Any of the columns. That’s fine. Um, but it’s also,

it drops any latitude and longitude columns. So if that but it, any, the latitude and longitude need

to have a certain name for that to work. Right.

75

Bjørn: Okay. Yeah. Yeah.

Thomas: So little details like that. Um, at the moment it, they wouldn’t drop these columns because

it’s latitude and then space and then these brackets ns, um, I then maybe that should be a setting

that you can set in the program that just allows you to specify what the latitude and longitude

columns are called. So they get filtered out of the target columns.

Bjørn: Yeah, yeah, yeah. it depends because we also need to have another program to, to combine

the data from the machine learning with the data from the drone, because there’s going to be a lock

with the GPS data and then an offset.

Thomas: Okay. So that’s like a data science kind of task.

Bjørn: Yeah. Yeah, exactly. Yeah.

Thomas: Well we can talk about that after we hand in this submission. If it’s, you need help with

that, maybe we can do something there. Yeah. Alright, well good. Uh, yeah, I’ll, I’ll send you an

email with, uh, the package in it and, uh

Bjørn: Okay. Any other que comments? A Emil questions?

Emil: No, I think we’re good.

Thomas: Yeah. Yeah. Yeah. Great. We’ll see you!

Bjørn: ¡laugh¿. Have a good weekend.

Emil: Bye.

Thomas: Bye.

76

8.7 Code: KML Creator

####################

/__main__.py

####################

import logging

from config import DEVELOPMENT

from config import TEMP_FILES

from src.view.gui_main import KmlCreatorGui

if DEVELOPMENT:

logging.basicConfig(

filename=str(TEMP_FILES / "app.log"),

filemode="w",

format="%(name)s - %(levelname)s - %(message)s",

level=logging.DEBUG,

)

logger = logging.getLogger(__name__)

logger.info("Starting app")

if __name__ == "__main__":

view = KmlCreatorGui()

view.mainloop()

####################

/config.py

####################

from pathlib import Path

Folder paths

SRC_FOLDER = Path("src")

TEMP_FILES = Path("temp_files")

CSV_PATH = TEMP_FILES / "csv_files"

SHP_PATH = TEMP_FILES / "shp_files"

BINNED_SHP_PATH = TEMP_FILES / "binned_shp_files"

POLYGON_SHP_PATH = TEMP_FILES / "polygon_shp_files"

TIF_PATH = TEMP_FILES / "tif_files"

KML_PATH = TEMP_FILES / "kml_files"

SAVED_STATE = TEMP_FILES / "saved_state.json"

77

Test path and file names

TEST_PATH = Path("tests")

TEST_CONTEXT_PATH = TEST_PATH / "context"

TEST_CSV_NAME = "test"

TEST_CSV_DIMENSIONS = (430, 2)

TEST_KML_NAME = "expected"

TEST_SHP_NAME = "expected_bin"

TEST_TIF_NAME = "expected"

TEST_POLYGON_SHP_NAME = "expected_polygons"

GUI Spinner speed

SPINNER_SPEED = 100

Assorted backend constants

COLUMNS_TO_DROP = ["index", "lat", "lon", "long", "latitude", "longitude"]

ELLIPSOID = "WGS-84"

PROJECTION = "EPSG:4326"

SHAPEFILE_DRIVER = "ESRI Shapefile"

INTERPOLATION_OUTPUT_FORMAT = "GTiff"

INTERPOLATION_OUTPUT_TYPE = "Byte"

INTERPOLATION_ALGORITHM = "average"

When True, logging is enabled

DEVELOPMENT = True

####################

/setup.py

####################

from setuptools import find_packages

from setuptools import setup

with open("README.md") as f:

readme = f.read()

with open("LICENSE") as f:

license = f.read()

with open("requirements.txt") as f:

78

requirements = f.read().splitlines()

setup(

name="Seavis: Mussel Data",

version="1.0.0",

author="Thomas O’Neill",

author_email="thomas.oneill@gmail.com",

long_description=readme,

packages=find_packages(),

install_requires=requirements,

entry_points={

"console_scripts": [

"your-command=your_package.module:main_function",

],

},

)

####################

/src/__init__.py

####################

####################

/src/view/gui_console.py

####################

import tkinter as tk

from typing import TYPE_CHECKING

if TYPE_CHECKING:

from view.gui_main import KmlCreatorGui

class ConsoleFrame(tk.Frame):

"""

A frame that contains a console for the user to view the output of the program

:param master: The parent widget

"""

master: "KmlCreatorGui"

console_title: tk.Label

79

console_text: tk.Text

scrollbar: tk.Scrollbar

def __init__(self, master: "KmlCreatorGui"):

super().__init__()

self.parent = master

Destroy the old console if it exists

if hasattr(master, "console_frame"):

self.parent.console_frame.destroy()

Create a title for the console and anchor it to the left.

self.console_title = tk.Label(self, text="Console", anchor=tk.W)

self.console_title.pack(side=tk.TOP, fill=tk.X)

Create a text widget for the console. Readonly.

self.console_text = tk.Text(self, state=tk.DISABLED)

self.console_text.pack(side=tk.TOP, fill=tk.X)

Create a scrollbar for the console

self.scrollbar = tk.Scrollbar(self, command=self.console_text.yview)

self.scrollbar.pack(side="right", fill="y")

Configure the console to use the scrollbar

self.console_text.config(yscrollcommand=self.scrollbar.set)

####################

/src/view/gui_main.py

####################

import logging

import tkinter as tk

from pathlib import Path

from tkinter import filedialog

from typing import Any

from presenter.presenter import Presenter

from view.gui_button_frame import ButtonFrame

from view.gui_console import ConsoleFrame

from view.gui_header import Header

80

from view.gui_settings import SettingsFrame

from view.gui_submit import Submit

from .gui_table import TableFrame

logger = logging.getLogger(__name__)

class KmlCreatorGui(tk.Tk):

"""

The main GUI window.

"""

presenter: "Presenter"

settings: dict[str, int]

csv_file_path: Path = Path()

saved_rows: list[dict[str, Any]] = []

header_frame: Header

table_frame: TableFrame

console_frame: ConsoleFrame

button_frame: ButtonFrame

settings_frame: SettingsFrame

submit: Submit

submit_frame: Submit

def __init__(self):

Call the parent constructor

super().__init__()

Set the title of the window

self.title("KML Creator")

Set the default font, size and window size

self.option_add("*Font", "Verdana 10")

self.geometry("400x75")

Create the header

self.header_frame = Header(master=self)

81

Create a Presenter object to facilitate communication between the view and

the model. The presenter will

also load the GUI state from the saved_state JSON file.

self.presenter = Presenter(view=self)

self.presenter.load_gui_state()

Set up callback for when the window is closed. When this happens, the GUI

state is saved to the saved_state

JSON file.

self.protocol("WM_DELETE_WINDOW", self.on_close)

def create_table_and_accessories(self) -> None:

"""

Create the table and the accessories (buttons, settings, console).

"""

if not hasattr(self, "csv_file_path"):

return

Create the table

self.table_frame = TableFrame(

parent=self,

)

Create the buttons ("Select all", "Deselect all", "Add row", "Delete row",

"Submit")

self.button_frame = ButtonFrame(master=self)

self.button_frame.pack(side=tk.TOP, fill=tk.Y, anchor=tk.W)

Create the settings ("Name", "Pixel Size", "Radius width", Radius height",

"Smoothing", "Angle")

self.settings_frame = SettingsFrame(master=self)

self.settings_frame.pack(side=tk.TOP, expand=True, fill=tk.BOTH)

Create the console

self.console_frame = ConsoleFrame(master=self)

self.console_frame.pack(side=tk.TOP, expand=True, fill=tk.BOTH)

Set the window size to fit the table

self.geometry(f"{self.table_frame.width + 10}x800")

82

@staticmethod

def ask_user_file_directory() -> Path | None:

"""

Open a file dialog window to allow the user to select a directory.

"""

file_path_str: str = filedialog.askdirectory()

If user cancels, return None

if file_path_str == ():

return None

return Path(file_path_str)

@staticmethod

def ask_user_file_path(filetypes=None) -> Path | None:

"""

Open a file dialog window to allow the user to select a file. The file must

When the user cancels the file dialog, file_path is an empty tuple. Return if

:param filetypes: The file types to allow the user to select. Defaults to CSV

files.

"""

if filetypes is None:

filetypes = [("CSV files", "*.csv")]

file_path: str = filedialog.askopenfilename(filetypes=filetypes)

if file_path == ():

return

return Path(file_path)

def get_rows(

self, ensure_filled=True, selected_only=False

) -> dict[str, Any] | None:

"""

Get the rows from the table.

:param ensure_filled: If True, displays a message box if any required fields are

empty, and returns None.

:param selected_only: If True, only return rows that have been selected

(checkbox is ticked).

"""

if hasattr(self, "table_frame"):

return self.table_frame.get_rows(

83

ensure_filled=ensure_filled, selected_only=selected_only

)

def get_csv_file_path(self) -> Path | None:

"""

Get the path to the CSV file.

"""

if hasattr(self, "header_frame"):

return self.header_frame.csv_file_path

def get_settings(self) -> dict[str, int | str] | None:

"""

Get the settings from the settings frame ("Name", "Pixel Size", "Radius width",

Radius height", "Smoothing",

"Angle").

"""

if hasattr(self, "settings_frame"):

return self.settings_frame.get_settings()

def set_csv_file_path(self, file_path=None) -> None:

"""

Set the path to the CSV file.

:param file_path: The path to the CSV file.

"""

if file_path is None:

file_path: Path = self.ask_user_file_path()

Update the file label with the path to the selected file

self.header_frame.csv_file_path_label.config(text=str(file_path))

Convert to pathlib object

self.header_frame.csv_file_path = file_path

def set_target_columns(self, target_columns) -> None:

"""

Set the target columns.

:param target_columns: The target columns fetched from the column names in the

CSV file. Certain columns are

excluded (e.g. "lat", "lon").

"""

self.target_columns = target_columns

84

def set_saved_rows(self, rows) -> None:

"""

Set the saved rows.

:param rows: The rows fetched from the saved_state JSON file.

"""

self.saved_rows = rows

def set_col_min_max_values(self, column_min_max) -> None:

"""

Provide the minimum and maximum values for each column in the CSV file.

:param column_min_max: The minimum and maximum values for each column in the

CSV file.

"""

self.column_min_max = column_min_max

def set_settings(self, settings) -> None:

"""

Set the settings in the settings frame ("Name", "Pixel Size", "Radius width",

Radius height", "Smoothing",

"Angle").

:param settings: The saved settings fetched from the saved_state JSON file.

"""

TODO: Set settings.

pass

def print_to_console(self, text) -> None:

"""

Print text to the console.

:param text: The text to print to the console.

"""

self.console_frame.console_text.configure(state="normal")

self.console_frame.console_text.insert(tk.END, text)

self.console_frame.console_text.configure(state="disabled")

def submit(self):

"""

The method that is called when the "Submit" button is clicked. Creates a Submit

rows from the table, and then calls the submit method in the presenter. A

85

submission is in progress.

"""

self.submit = Submit(master=self)

def on_close(self) -> None:

"""

The method that is called when the window is closed. Saves the GUI state to a

JSON file before closing.

"""

try:

self.presenter.save_gui_state()

except Exception as e:

logger.error(e)

self.destroy()

####################

/src/view/gui_table_row_fields.py

####################

import tkinter as tk

from dataclasses import dataclass

from tkinter import ttk

from tkinter.colorchooser import askcolor

from typing import Any

from typing import TYPE_CHECKING

if TYPE_CHECKING:

from view.gui_table_row import TableRow

@dataclass

class RowField:

col_name: str

widget: tk.Checkbutton | tk.Entry | tk.Label | ttk.Combobox

datatype: Any

class TargetColumnCombobox(ttk.Combobox):

"""

A combobox that displays the target columns. If the user has loaded in a saved row,

86

the combobox will display the target column that was selected when the row was

saved.

:param parent: The parent widget.

:param values: The values to display in the combobox.

"""

def __init__(self, parent: "TableRow", values: list):

super().__init__(parent.canvas, values=values)

self.parent = parent

if parent.saved_row_data and (col := "target_column") in parent.saved_row_data:

self.current(parent.target_columns.index(parent.saved_row_data[col]))

else:

self.current(0)

self.bind("<<ComboboxSelected>>", self._update_min_and_max_bounds)

def _update_min_and_max_bounds(self, *args):

self.parent.lower_bound_entry.update_to_default_value()

self.parent.upper_bound_entry.update_to_default_value()

class LowerAndUpperBoundEntry(tk.Entry):

"""

A text entry box that displays the min and max bounds of the target column. The

and is erased when the user clicks on the entry box. If the user clicks away from

anything, the default value is restored.

:param parent: The parent widget.

"""

_default: str

def __init__(self, parent, **kwargs):

super().__init__(parent.canvas, **kwargs)

self.parent: TableRow = parent

self._get_default_value()

self.bind("<FocusIn>", self.erase_default_value)

self.bind("<FocusOut>", self.restore_default_value_if_empty)

def _get_default_value(self):

min_and_max = self.parent.target_col_min_max[

87

self.parent.target_column_combo_box.get()

]

self._default = f"Min: {min_and_max[0]}, Max: {min_and_max[1]}"

def update_to_default_value(self):

self._get_default_value()

self.delete(0, tk.END)

self.insert(0, self._default)

self.config(fg="grey")

def erase_default_value(self, event=None):

if self.get() == self._default:

self.delete(0, tk.END)

self.config(fg="black")

def restore_default_value_if_empty(self, event=None):

if self.get() == "":

self.update_to_default_value()

class ColourEntry(tk.Entry):

"""

A text entry box that displays the colour picked from the colour picker dialog.

:param parent: The parent widget.

"""

def __init__(self, parent, **kwargs):

super().__init__(parent.canvas, **kwargs)

self.parent: TableRow = parent

self.bind("<Button-1>", lambda event: self._choose_color())

def set_colour(self, colour):

"""

Sets the colour of the entry box to the colour passed in.

"""

self._choose_color(colour=colour)

def _choose_color(self, colour: str = None):

"""

88

Displays the colour picker dialog and sets the text in the entry box to the hex

:param colour: The colour to set the entry box to. If None, the colour picker

"""

if not colour:

colour = askcolor()[1] # returns a tuple (None, ’#ffffff’)

If a color is selected, set the text in the text entry to the hex value of

the colour

self.delete(0, tk.END)

self.insert(0, str(colour))

set entry box colour to the colour picked

self.config(bg=colour, fg=colour)

class CheckbuttonWithVar(tk.Checkbutton):

"""

A checkbutton that has a BooleanVar associated with it. The BooleanVar is set to

True when the checkbutton is checked, and False when it is unchecked.

"""

var: tk.BooleanVar

def __init__(self, *args, **kwargs):

self.var = tk.BooleanVar()

super().__init__(*args, variable=self.var, **kwargs)

def get(self):

return self.var.get()

####################

/src/view/gui_submit.py

####################

import logging

import tkinter as tk

from typing import TYPE_CHECKING

from config import SPINNER_SPEED

if TYPE_CHECKING:

from view.gui_main import KmlCreatorGui

89

logger = logging.getLogger(__name__)

class Submit:

"""

The class that collects the data from the GUI (table and settings) and submits it

to the presenter. Also displays a spinner while the process is running.

:param master: The parent widget.

"""

master: "KmlCreatorGui"

spinner_title: tk.Label

spinner: tk.Label

def __init__(self, master: "KmlCreatorGui"):

self.master = master

Clear parent.console_frame.console

self.master.console_frame.console_text.config(state=tk.NORMAL)

self.master.console_frame.console_text.delete("1.0", tk.END)

data = {}

Get the save directory from the user

save_directory = master.ask_user_file_directory()

If user presses cancel, return.

if not save_directory:

logger.info("User cancelled file dialog")

return

logger.info(f"Save directory: {save_directory}")

Get the row data from the table

try:

if bins := master.get_rows(ensure_filled=True, selected_only=True):

data["bins"] = bins

else:

return

except ValueError as e:

logger.error(e)

90

self.master.print_to_console(

"There was a problem collecting the data from the table."

)

return

Get the data from the settings

data["settings"] = master.settings_frame.get_settings()

logger.info(f"Settings: {data[’settings’]}")

if data:

self.submit_start_spinner()

master.presenter.initialize_and_run_process(

data=data, save_directory=save_directory

)

def submit_start_spinner(self) -> None:

"""

Start the spinner animation.

"""

Disable the Submit button so the user can’t click it again

self.master.button_frame.submit_button.config(state="disabled")

Create the spinner title

self.spinner_title = tk.Label(self.master.button_frame, text="Processing...")

self.spinner_title.pack(side=tk.LEFT, pady=10)

Create the spinner

self.spinner = tk.Label(self.master.button_frame, text="--")

self.spinner.pack(side=tk.LEFT, pady=10)

Start the spinner animation

self.submit_animate_spinner()

def submit_animate_spinner(self) -> None:

"""

Animate the spinner. The animation is done by rotating the spinner 30 degrees

every number of milliseconds set by config.SPINNER_SPEED.

"""

Rotate the spinner by 30 degrees

text = self.spinner.cget("text")

spin_dict = {"--": "\\", "\\": "|", "|": "/", "/": "--"}

91

self.spinner.config(text=spin_dict[text])

Schedule the next rotation after SPINNER_SPEED milliseconds

if self.master.button_frame.submit_button.cget("state") == "disabled":

self.master.table_frame.after(SPINNER_SPEED, self.submit_animate_spinner)

def submit_finish(self) -> None:

"""

Finish the submit process. This is called by the presenter when the process is

finished.

"""

Remove the spinner and spinner title

self.spinner_title.pack_forget()

self.spinner.pack_forget()

Re-enable the submit button

self.master.button_frame.submit_button.config(state="normal")

####################

/src/view/gui_button_frame.py

####################

import tkinter as tk

from typing import TYPE_CHECKING

if TYPE_CHECKING:

from view.gui_main import KmlCreatorGui

class ButtonFrame(tk.Frame):

"""

The frame containing the buttons for the GUI. Any existing buttons are destroyed

before the new ones are created.

:param master: The parent widget.

"""

master: "KmlCreatorGui"

select_all_button: tk.Button

deselect_all_button: tk.Button

add_button: tk.Button

92

remove_button: tk.Button

submit_button: tk.Button

def __init__(self, master: "KmlCreatorGui"):

super().__init__(master)

self.parent = master

Destroy the buttons if they already exist

if hasattr(self.parent, "button_frame"):

self.parent.button_frame.destroy()

button_data: list[tuple[str, callable]] = [

("Select All", lambda: master.table_frame.select_all(True)),

("Deselect All", lambda: master.table_frame.select_all(False)),

("Add Row", master.table_frame.add_row),

("Remove Row", master.table_frame.remove_rows),

("Submit", master.submit),

]

for text, command in button_data:

button = tk.Button(self, text=text, command=command)

setattr(self, text.lower().replace(" ", "_") + "_button", button)

button.pack(side=tk.LEFT, padx=10, pady=10, anchor=tk.W)

####################

/src/view/gui_header.py

####################

import tkinter as tk

from pathlib import Path

from typing import TYPE_CHECKING

if TYPE_CHECKING:

from view.gui_main import KmlCreatorGui

class Header(tk.Frame):

"""

Header frame for the GUI.

:param master: The parent widget.

93

"""

master: "KmlCreatorGui"

csv_file_path: Path = Path()

load_csv_text: tk.Label

load_csv_button: tk.Button

csv_file_path_label: tk.Label

def __init__(self, master: "KmlCreatorGui"):

super().__init__()

self.master = master

self.pack(side=tk.TOP, expand=True, fill=tk.BOTH)

self.load_csv_text = tk.Label(self, text="Load file", anchor=tk.W)

self.load_csv_text.pack(side=tk.TOP, fill=tk.X, expand=True)

self.load_csv_button = tk.Button(

self,

text="CSV file",

command=self.load_csv_button,

)

self.load_csv_button.pack(side=tk.LEFT, padx=10, pady=5)

self.csv_file_path_label = tk.Label(self, text="No file selected")

self.csv_file_path_label.pack(side=tk.LEFT, padx=10, pady=5)

def load_csv_button(self) -> None:

"""

Callback for the load_csv_button. If the user presses cancel, the function

returns and nothing happens.

"""

csv_file_path = self.master.ask_user_file_path()

if csv_file_path in [None, ""]:

return

self.master.presenter.load_gui_state(csv_file_path=csv_file_path)

####################

/src/view/gui_settings.py

####################

94

import tkinter as tk

from typing import TYPE_CHECKING

if TYPE_CHECKING:

from view.gui_main import KmlCreatorGui

class SettingsFrame(tk.Frame):

"""

The settings frame. The settings are stored in a dictionary, with the key being the

being a tuple containing the default value and the datatype of the value. Any

the new ones are created.

:param master: The parent widget.

"""

master: "KmlCreatorGui"

settings: dict[str, tuple[str | int, type]]

settings_title: tk.Label

name_label: tk.Label

name_entry: tk.Entry

pixel_size_label: tk.Label

pixel_size_entry: tk.Entry

radius_width_label: tk.Label

radius_width_entry: tk.Entry

radius_height_label: tk.Label

radius_height_entry: tk.Entry

angle_label: tk.Label

angle_entry: tk.Entry

smoothing_label: tk.Label

smoothing_entry: tk.Entry

simplification_label: tk.Label

simplification_entry: tk.Entry

def __init__(self, master: "KmlCreatorGui"):

super().__init__(master)

self.master = master

Destroy the old settings if they exist

if hasattr(self.master, "settings_frame"):

95

self.master.settings_frame.destroy()

Settings with default values

self.settings = {

"name": ("Batch 1", str),

"pixel_size": (10, int),

"radius_width": (60, int),

"radius_height": (60, int),

"angle": (0, int),

"smoothing": (10, float),

"simplification": (10, float),

}

Create a title for the other settings and anchor it to the left

self.settings_title = tk.Label(self, text="Settings", anchor=tk.W)

self.settings_title.pack(side=tk.TOP, fill=tk.X)

Create the settings and pack them

for setting in self.settings:

label = setting.replace("_", " ").title()

setattr(

self,

setting + "_label",

tk.Label(self, text=label),

)

getattr(self, setting + "_label").pack(side=tk.LEFT, padx=10, pady=5)

setattr(self, setting + "_entry", tk.Entry(self, width=10))

getattr(self, setting + "_entry").pack(side=tk.LEFT, padx=10, pady=5)

getattr(self, setting + "_entry").insert(0, self.settings[setting][0])

def get_settings(self) -> dict[str, int | str]:

"""

Get the settings from the settings frame.

"""

settings = {}

for setting in self.settings:

datatype = self.settings[setting][1]

value = getattr(self, setting + "_entry").get()

if datatype == int:

96

settings[setting] = int(value)

elif datatype == str:

settings[setting] = value # Already a string

elif datatype == float:

settings[setting] = float(value)

else:

raise TypeError(f"Type {self.settings[setting][1]} not supported")

return settings

####################

/src/view/gui_table_row.py

####################

import logging

import tkinter as tk

from typing import Any

from typing import TYPE_CHECKING

from view.gui_table_row_fields import CheckbuttonWithVar

from view.gui_table_row_fields import ColourEntry

from view.gui_table_row_fields import LowerAndUpperBoundEntry

from view.gui_table_row_fields import RowField

from view.gui_table_row_fields import TargetColumnCombobox

if TYPE_CHECKING:

from view.gui_table import TableFrame

logger = logging.getLogger(__name__)

class TableRow:

"""

A row in the table. Each row contains the columns reflected in TableFrame.headers.

:param master: The parent widget.

:param saved_row_data: The saved row data, if any.

"""

master: "TableFrame"

Entry widgets

97

check_box: CheckbuttonWithVar

bin_number_label: tk.Label

target_column_combo_box: TargetColumnCombobox

entry_colour: ColourEntry

opacity_entry: tk.Entry

description_entry: tk.Entry

lower_bound_entry: LowerAndUpperBoundEntry

upper_bound_entry: LowerAndUpperBoundEntry

Saved row data

saved_row_data: dict[str, Any]

Cell and button dimensions

cell_width: int

cell_height: int

button_width: int

button_height: int

def __init__(self, master: "TableFrame", saved_row_data=None):

self.row_num = len(master.rows)

self.saved_row_data = saved_row_data

Get the parent attributes

self.parent = master

self.cell_width = master.cell_width

self.cell_height = master.cell_height

self.canvas = master.canvas

self.target_columns = master.target_columns

self.target_col_min_max = master.column_min_max

Create entry widgets

self.row_fields = []

self.create_entries()

def make_canvas_window(self, num, item) -> None:

"""

Create a canvas window for the given widget.

:param num: The column number of the widget.

:param item: The widget to create a canvas window for.

98

"""

canvas_y_padding: int = (

5 # 5 pixels of padding on the left and right of the widget

)

canvas_x_padding: int = (

5 # 5 pixels of padding on the top and bottom of the widget

)

canvas_x_offset: int = 10 # 10 pixels of offset from the right edge of the cell

x1: int = num * self.cell_width

y1: int = (self.row_num + 1) * self.cell_height

self.canvas.create_window(

x1 + canvas_y_padding,

y1 + canvas_x_padding,

width=self.cell_width - canvas_x_offset,

window=item,

anchor="nw",

)

def create_entries(self) -> None:

"""

Create the entry widgets for this row. First, the widgets are created, setting

value or a default value. Then, the canvas windows are created for each widget

the row_fields list.

"""

Assign the entry widgets to the row

self.check_box = CheckbuttonWithVar()

self.bin_number_label = tk.Label(self.canvas, text=f"{self.row_num + 1}")

self.target_column_combo_box = TargetColumnCombobox(

parent=self, values=self.target_columns

)

self.description_entry = tk.Entry(self.canvas)

self.lower_bound_entry = LowerAndUpperBoundEntry(

parent=self,

)

self.upper_bound_entry = LowerAndUpperBoundEntry(

parent=self,

)

self.entry_colour = ColourEntry(parent=self)

self.opacity_entry = tk.Entry(self.canvas)

99

Make the canvas window for each widget and append each widget to the

row_fields list.

Select column

if self.saved_row_data and (col := "select") in self.saved_row_data:

self.check_box.var.set(self.saved_row_data[col])

else:

self.check_box.var.set(False)

self.make_canvas_window(num=len(self.row_fields), item=self.check_box)

self.row_fields.append(

RowField(col_name="select", widget=self.check_box, datatype=bool)

)

Bin Number column

self.make_canvas_window(num=len(self.row_fields), item=self.bin_number_label)

self.row_fields.append(

RowField(col_name="bin_number", widget=self.bin_number_label, datatype=int)

)

Target Column column

self.make_canvas_window(

num=len(self.row_fields), item=self.target_column_combo_box

)

self.row_fields.append(

RowField(

col_name="target_column",

widget=self.target_column_combo_box,

datatype=str,

)

)

Description column

if self.saved_row_data and (col := "description") in self.saved_row_data:

if self.saved_row_data[col]:

self.description_entry.insert(0, self.saved_row_data[col])

self.make_canvas_window(num=len(self.row_fields), item=self.description_entry)

self.row_fields.append(

RowField(

col_name="description", widget=self.description_entry, datatype=str

)

100

)

Lower and Upper Bounds columns

for col, widget in [

("lower_bound", self.lower_bound_entry),

("upper_bound", self.upper_bound_entry),

]:

if self.saved_row_data and col in self.saved_row_data:

if self.saved_row_data[col] is not None: # allow 0 as a valid value

widget.insert(0, str(self.saved_row_data[col]))

else:

widget.update_to_default_value()

else:

widget.update_to_default_value()

self.make_canvas_window(num=len(self.row_fields), item=widget)

self.row_fields.append(RowField(col_name=col, widget=widget, datatype=int))

Colour column

if self.saved_row_data and (col := "colour") in self.saved_row_data:

if colour := self.saved_row_data[col]:

self.entry_colour.set_colour(colour)

self.make_canvas_window(num=len(self.row_fields), item=self.entry_colour)

self.row_fields.append(

RowField(col_name="colour", widget=self.entry_colour, datatype=str)

)

Opacity Column column

if self.saved_row_data and (col := "opacity") in self.saved_row_data:

if self.saved_row_data[col] is not None: # allow 0 opacity

self.opacity_entry.insert(0, str(self.saved_row_data[col]))

self.make_canvas_window(num=len(self.row_fields), item=self.opacity_entry)

self.row_fields.append(

RowField(col_name="opacity", widget=self.opacity_entry, datatype=int)

)

def get_row_data(self) -> dict[str, Any]:

"""

Returns a dict containing the data from the row. A try/except block is used to

datatype. If this fails, the field is not added to the row_data dict, as the

101

invalid data (e.g. a string in a field that should contain an int).

"""

row_data = {}

bin_number = None

for row_field in self.row_fields:

The bin number uses a different function to get the data from the widget

if row_field.col_name == "bin_number":

bin_number = row_field.widget.cget("text")

continue

row_data[row_field.col_name] = self._convert_field_to_datatype(row_field)

return {bin_number: row_data}

def destroy_entries(self) -> None:

"""

Destroys all the entry widgets in the row_fields list.

"""

for entry in self.row_fields:

entry.widget.destroy()

self.row_fields = []

def is_selected(self) -> bool:

"""

Returns True if the row is selected, False otherwise.

"""

return self.row_fields[0].widget.var.get()

def contains_empty_entry(self) -> bool:

"""

Returns True if any of the entry widgets in the row_fields list are empty, False

otherwise. Ignores the

Bin Number and Select columns.

"""

for row_field in self.row_fields:

if row_field.col_name in ["bin_number", "selected"]:

continue

if row_field.widget.get() is None:

return True

row_field_value = self._convert_field_to_datatype(row_field)

102

if row_field_value is not None:

continue

else:

return True

return False

def _convert_field_to_datatype(self, row_field: RowField) -> Any:

"""

Converts the data in the row_field to the correct datatype. If the conversion

fails, None is returned.

"""

if row_field.col_name == "bin_number":

return row_field.widget.cget("text")

value = row_field.widget.get()

value = None if value == "" else value

try:

if isinstance(row_field.datatype(), int):

value = int(value)

elif isinstance(row_field.datatype(), float):

value = float(value)

except ValueError:

logger.exception(

f"Failed to convert {row_field.col_name} to {row_field.datatype()}"

)

value = None

finally:

return value

####################

/src/view/gui_table.py

####################

import logging

import tkinter as tk

from tkinter import messagebox

from typing import Any

from view.gui_table_row import RowField

from view.gui_table_row import TableRow

103

from view.gui_table_row_fields import CheckbuttonWithVar

logger = logging.getLogger(__name__)

class TableFrame(tk.Frame):

"""

The frame containing the table for the GUI. Any existing table is destroyed before

If there are no saved rows (loaded in from the Presenter), a single empty row is

:param master: The parent widget.

"""

headers: list[str] = [

"Select",

"Bin Number",

"Target Column",

"Description",

"Lower Bound",

"Upper Bound",

"Colour",

"Opacity (%)",

]

rows = []

width: int

cell_width: int = 180

cell_height: int = 35

target_columns: list[str]

saved_rows: dict[str, dict[str, Any]]

column_min_max: dict[str, tuple[float, float]]

rows: list[TableRow]

canvas_frame: tk.Frame

canvas: tk.Canvas

title: tk.Label

scrollbar_v: tk.Scrollbar

scrollbar_h: tk.Scrollbar

def __init__(self, parent):

Call the parent constructor

104

super().__init__()

self.parent = parent

self.rows = []

Destroy the table if it already exists

if hasattr(self.parent, "table_frame"):

self.parent.table_frame.destroy()

Pack the table frame into the parent

self.pack(side=tk.TOP, expand=True, fill=tk.BOTH)

Get the target columns, saved rows, and column min/max from the parent

self.target_columns = parent.target_columns

self.saved_rows = parent.saved_rows

self.column_min_max = parent.column_min_max

Create a title for the table and anchor to the left

self.title = tk.Label(self, text="Table", anchor="w")

self.title.pack(side=tk.TOP, fill=tk.X)

Create a canvas to hold the table, scrollbars, and headers

self.canvas = tk.Canvas(self)

self.canvas.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)

self.create_scrollbars()

self.create_headers()

Draw the rows

if self.saved_rows:

If there are saved rows, draw them

for row in self.saved_rows.values():

Check that each saved row has all the headers

try:

self.add_row(row)

except Exception as e:

logger.error(e)

else:

Add a row if there are no saved rows

self.add_row()

105

self.update_scrollregion()

def create_scrollbars(self) -> None:

"""

Create the vertical and horizontal scrollbars for the table.

"""

scrollbar_v = tk.Scrollbar(self, orient=tk.VERTICAL, command=self.canvas.yview)

scrollbar_v.pack(side=tk.RIGHT, fill=tk.Y)

self.canvas.config(yscrollcommand=scrollbar_v.set)

scrollbar_h = tk.Scrollbar(

self, orient=tk.HORIZONTAL, command=self.canvas.xview

)

scrollbar_h.pack(side=tk.BOTTOM, fill=tk.X)

scrollbar_h.place(relx=0, rely=1, relwidth=1, anchor="sw")

self.canvas.config(xscrollcommand=scrollbar_h.set)

def create_headers(self) -> None:

"""

Create the column headers for the table.

"""

Draw the table headers

for i, header in enumerate(self.headers):

x1 = i * self.cell_width

y1 = 0

x2 = (i + 1) * self.cell_width

y2 = self.cell_height

self.canvas.create_rectangle(x1, y1, x2, y2, fill="gray", outline="black")

self.canvas.create_text((x1 + x2) / 2, (y1 + y2) / 2, text=header)

Set required width and height of the table

self.width = len(self.headers) * self.cell_width + 10 # +10 for scrollbar

def add_row(self, saved_row=None) -> None:

"""

Add a row to the table and update the scroll region.

"""

new_row = TableRow(master=self, saved_row_data=saved_row)

106

self.rows.append(new_row)

self.update_scrollregion()

def remove_rows(self) -> None:

"""

Remove the selected rows from the table. If no rows are selected, an error

Once the rows are removed, the remaining rows are re-drawn and the scroll

"""

rows_to_remove = []

for row in self.rows:

if row.is_selected():

row.destroy_entries()

rows_to_remove.append(row.row_num)

if not rows_to_remove:

messagebox.showerror("Error", "Please select a row to remove")

return

rows_to_remove.sort(reverse=True)

for row_num in rows_to_remove:

self.rows.pop(row_num)

remaining_rows = self.get_rows(ensure_filled=False, selected_only=False)

Destroy all rows

for row in self.rows:

row.destroy_entries()

self.rows = []

Re-draw the rows

for row in remaining_rows.values():

self.add_row(row)

self.update_scrollregion()

def get_rows(

self, ensure_filled=True, selected_only=False

) -> dict[str, Any] | None:

"""

107

Get the data from the table rows and return it as a dictionary. If

will be displayed to the user if any fields are empty. If selected_only is

selected rows will be returned.

:param ensure_filled: If True, ensure all fields are filled before returning

:param selected_only: If True, only return the data from the selected rows

"""

if selected_only:

rows = []

for row in self.rows:

if row.is_selected():

rows.append(row)

else:

rows = self.rows

Ensure all fields are filled

if ensure_filled:

for row in rows:

if row.contains_empty_entry():

messagebox.showerror("Error", "Please fill in all fields")

return

Create a dictionary of the table data where the key is the bin

number and the value is a dictionary of the row data

data = {}

for row in rows:

data.update(row.get_row_data())

return data

def select_all(self, select_all: bool) -> None:

"""

Select or deselect all rows in the table.

:param select_all: If True, select all rows. If False, deselect all rows.

"""

for row in self.rows:

row: TableRow

select_box: RowField = row.row_fields[0]

assert isinstance(

select_box.widget, CheckbuttonWithVar

) # helps type checker

108

if select_all:

select_box.widget.select()

select_box.widget.var.set(True)

else:

select_box.widget.deselect()

select_box.widget.var.set(False)

def update_scrollregion(self) -> None:

"""

Update the scroll region of the canvas to fit the table.

"""

region = self.canvas.bbox(tk.ALL)

region = (region[0], region[1], region[2], region[3] + 20)

self.canvas.config(scrollregion=region)

####################

/src/view/__init__.py

####################

Empty init file for view package. Causes Python to treat the directory as a package.

####################

/src/presenter/presenter.py

####################

import json

import logging

import os

import threading

from pathlib import Path

from typing import Any

from typing import TYPE_CHECKING

import pandas as pd

from model.bin import Bin

from model.prepar import Preper

from model.runner import Runner

from config import BINNED_SHP_PATH

from config import COLUMNS_TO_DROP

from config import KML_PATH

109

from config import POLYGON_SHP_PATH

from config import SAVED_STATE

from config import TIF_PATH

if TYPE_CHECKING:

from view.gui_main import KmlCreatorGui

logger = logging.getLogger(__name__)

class Presenter:

"""

Presenter class handles the communication between the view and the model. The view

presenter by calling methods from the presenter. The presenter communicates with

from the view, and vice versa. Likewise, the presenter communicates with the model

model, and vice versa.

When the Presenter is instantiated, it clears any temporary files that may have

session. It also loads the GUI state from the saved state JSON file, if it exists.

:param view: The view that the presenter is controlling.

"""

view: "KmlCreatorGui"

def __init__(self, view):

self.view = view

self.clear_temp_files()

def clear_temp_files(self) -> None:

"""

Clear any temporary files that may have been left over from a previous session.

Uses a list of folders to iterate through and delete all files in each folder,

except for ".gitkeep". .gitkeep is used to keep the folders in the repository,

but is not needed for the program to run. Note that the SHP_PATH folder is not

included in the list of folders to clean up, as this contains the shapefiles

that the user might want to keep for later use.

"""

List of folders to clean up

folders = [BINNED_SHP_PATH, POLYGON_SHP_PATH, TIF_PATH, KML_PATH]

110

for folder in folders:

for file_path in folder.iterdir():

if file_path.name != ".gitkeep":

if file_path.is_file(): # Not a folder

file_path.unlink()

logger.info(f"Deleted file {file_path}")

def load_gui_state(self, csv_file_path: Path = None) -> None:

"""

Load the GUI state from the saved state JSON file. If the saved state JSON file

saved state JSON file does not contain a csv_file_path, then the GUI state is

longer exists or if there is an error loading the saved state JSON file, then

:param csv_file_path: The path to the CSV file to load the GUI state from. If

is loaded from the saved state JSON file.

"""

rows, settings, file_path = [], {}, None

if csv_file_path:

file_path = csv_file_path

else:

Open the saved state file

try:

with open(str(SAVED_STATE), "r") as f:

state = json.load(f)

except FileNotFoundError:

logger.exception("No saved state found")

return

try:

saved_file_path = state.get("csv_file_path", None)

if saved_file_path in [None, "", "."]:

return

Check if csv file specified in saved state still exists

if not os.path.exists(saved_file_path):

return

file_path = Path(saved_file_path)

rows = state.get("rows", [])

settings = state.get("settings", {})

except FileNotFoundError:

logger.exception("No saved state found")

except Exception as e:

111

logger.exception(e)

if file_path is None:

return

target_columns, column_min_max = self.get_target_columns_and_default_values(

csv_file_path=file_path

)

Target columns are mandatory so we need to check if they exist before loading

the state

if target_columns in [None, []]:

return

Load the GUI state

self.view.set_target_columns(target_columns=target_columns)

self.view.set_col_min_max_values(column_min_max=column_min_max)

self.view.set_csv_file_path(file_path)

self.view.set_saved_rows(rows=rows)

self.view.set_settings(settings=settings)

self.view.create_table_and_accessories()

def save_gui_state(self) -> None:

"""

Save the GUI state to the saved state JSON file. If the saved state JSON file

created. If the saved state JSON file does exist, then it is overwritten. The

are used to get the GUI state (e.g. csv_file_path, rows, settings, etc.). If

they are not saved.

"""

state: dict[str, str | dict[str, str]] = dict()

if csv_file_path := self.view.get_csv_file_path():

state["csv_file_path"] = str(csv_file_path)

if rows := self.view.get_rows(ensure_filled=False):

state["rows"] = rows

if settings := self.view.get_settings():

state["settings"] = settings

Save the GUI state to the saved state JSON file

try:

112

with open(str(SAVED_STATE), "w") as f:

json.dump(state, f)

logger.info("Saved state to JSON file")

except FileNotFoundError:

logger.exception("No saved state found")

except Exception as e:

logger.exception(e)

def get_target_columns_and_default_values(

self, csv_file_path: Path

) -> (list, dict):

"""

Get the target columns and column min/max values from the CSV file. The target

the user can select in the GUI’s combobox. The column min/max values are the

each column in the CSV file. These values are used for the lower and upper

:param csv_file_path: The path to the CSV file to get the target columns and

"""

When loading from a saved state, the file may no longer exist

if not os.path.exists(csv_file_path):

raise FileNotFoundError

try:

with open(csv_file_path, "r") as f:

load csv file into pandas

first_line = f.readline()

if ";" in first_line:

csv_df = pd.read_csv(csv_file_path, index_col=0, sep=";")

else:

csv_df = pd.read_csv(csv_file_path, index_col=0, sep=",")

except Exception as e:

logger.exception(e)

raise e

Define columns to drop. They should only be dropped if they exist in the csv

file

cols_to_drop = [col for col in COLUMNS_TO_DROP if col in csv_df.columns]

csv_df = csv_df.drop(columns=cols_to_drop)

column_names: list[str] = csv_df.columns.to_list()

columns_min_and_max: dict[str, tuple[int, int]] = dict()

113

Get min and max values for each column

for column_name in column_names:

columns_min_and_max[column_name] = (

csv_df[column_name].min(),

csv_df[column_name].max(),

)

return column_names, columns_min_and_max

Try to load the file

def initialize_and_run_process(self, data, save_directory) -> None:

"""

Initialize and run the process in a separate thread. This is done so that the

GUI does not freeze while the process is running.

:param data: The data to pass to the process (row data, settings, etc.).

:param save_directory: The directory to save the output kml files to.

"""

t = threading.Thread(target=self.run_process, args=(data, save_directory))

t.start()

return

def print_to_view_console(self, text: str) -> None:

"""

Print text to the view’s console.

"""

logger.info(text)

self.view.print_to_console(text=text)

def run_process(self, data, save_directory) -> None:

"""

Run the process. This is done in a separate thread so that the GUI does not

running. Bin objects are created from the data and then a Preper and Runner are

a shapefile for the Runner, which then creates further shapefiles (one for each

interpolation, running polygonization and converting the polygon shapefiles to

:param data: The data fetched from the GUI (row data, settings, etc.).

:param save_directory: The directory to save the output kml files to.

"""

bins_dict: dict[str, Any] = data["bins"]

settings_dict: dict[str, Any] = data["settings"]

114

bins: list[Bin] = []

Create bins

for k, v in bins_dict.items():

bins.append(

Bin(

enum=k,

column=v["target_column"],

description=v["description"],

lower=v["lower_bound"],

upper=v["upper_bound"],

colour=v["colour"],

opacity=v["opacity"],

ignore=False,

boundary_type="[]",

)

)

Create Preper and Runner

preper = Preper(

name=settings_dict["name"],

save_directory=save_directory,

csv_file_path=self.view.get_csv_file_path(),

bins=bins,

print_to_view=self.print_to_view_console,

)

runner = Runner(

preper=preper,

print_to_frontend=self.print_to_view_console,

radius_width_metres=settings_dict["radius_width"],

radius_height_metres=settings_dict["radius_height"],

smoothing=settings_dict["smoothing"],

pixel_size_metres=settings_dict["pixel_size"],

angle=settings_dict["angle"],

simplification_tolerance=settings_dict["simplification"],

)

self.print_to_view_console("\nCreating shapefile for each bin...")

preper.create_shp_for_each_bin()

115

self.print_to_view_console("\nRunning interpolation for each bin...")

runner.run_interpolation_for_each_bin()

self.print_to_view_console("...done.")

self.print_to_view_console("\nRunning polygonization for each bin...")

runner.run_polygonize_for_each_bin()

self.print_to_view_console("...done.")

self.print_to_view_console("\nCreating KML for each bin...")

runner.create_kml_for_each_bin()

self.print_to_view_console("...done.")

self.print_to_view_console("\nDeleting temporary files...")

runner.delete_files()

self.print_to_view_console("...done.")

self.view.submit.submit_finish()

self.print_to_view_console("\nFinished.")

####################

/src/presenter/__init__.py

####################

This file causes Python to treat the directory as a package.

####################

/src/model/bin.py

####################

import dataclasses

@dataclasses.dataclass

class Bin:

"""

A class to represent a bin. A bin is a range of values that are grouped together.

0 - 10, 10 - 20, 20 - 30, etc. The bin class is used to store the information about

description, the range of values, the colour, etc. The attributes ending in

Preper or the Runner during the processing of the data.

:param enum: The bin number. This is used to identify the bin in the code.

116

:param column: The column name that the bin is associated with.

:param description: The description of the bin.

:param lower: The lower bound of the bin.

:param upper: The upper bound of the bin.

:param bin_shp_file_name: The name of the bin shapefile.

:param tif_file_name: The name of the tif file.

:param polygon_shp_file_name: The name of the polygon shapefile.

:param kml_file_name: The name of the kml file.

:param colour: The colour of the bin.

:param opacity: The opacity of the bin.

:param ignore: Whether or not the bin should be ignored.

:param boundary_type: The boundary type of the bin. This is used to determine

are inclusive or exclusive. The first character is the lower bound and "[" means

The second character is the upper bound and "]" means inclusive and "[" means

that the lower bound is inclusive and the upper bound is exclusive.

"""

enum: int

column: str

description: str

lower: int

upper: int

bin_shp_file_name: str = None

tif_file_name: str = None

polygon_shp_file_name: str = None

kml_file_name: str = None

colour: str = "D10000"

opacity: int = 100

ignore: bool = False

boundary_type: str = "[["

####################

/src/model/runner.py

####################

import logging

import os

from typing import Callable

from typing import TYPE_CHECKING

117

import geopandas as gp

import geopy.distance

import shapely as sp

import simplekml

from osgeo import gdal

from osgeo_utils.gdal_polygonize import gdal_polygonize

if TYPE_CHECKING:

from . import Bin

from .prepar import Preper

from config import (

BINNED_SHP_PATH,

INTERPOLATION_OUTPUT_FORMAT,

INTERPOLATION_OUTPUT_TYPE,

INTERPOLATION_ALGORITHM,

)

from config import KML_PATH

from config import POLYGON_SHP_PATH

from config import TIF_PATH

logger = logging.getLogger(__name__)

class Runner:

"""

Creates individual shapefiles for each bin, interpolates them, polygonizes them,

Files are saved in the temp_files directory and deleted when done. The run_all()

methods in order.

:param preper: Preper object that contains data pointing to the shapefile to be used

:param radius_width_metres: Search ellipse width in metres

:param radius_height_metres: Search ellipse height in metres

:param pixel_size_metres: Pixel width/height in metres

:param smoothing: Smoothing tolerance for the interpolation. Greater values result

:param simplification_tolerance: for the polygonization. Greater values result in

:param angle: Angle in degrees. Measured counter-clockwise from the positive

:param print_to_frontend: Function to print to the frontend

"""

preper: Preper

118

radius_x_metres: int

radius_y_metres: int

pixel_size_metres: int

smoothing: int

simplification_tolerance: int

angle: int

print_to_frontend: Callable[[str], None]

def __init__(

self,

preper: Preper,

radius_width_metres: int,

radius_height_metres: int,

pixel_size_metres: int,

smoothing: int,

simplification_tolerance: int = 10,

angle: int = 0,

print_to_frontend: Callable[[str], None] = None,

):

Get attributes from Preper

self.name = preper.name

self.bins = preper.bins

self.save_directory = preper.save_directory

self.geo_df = preper.geo_df

self.dataset_height = preper.dataset_height

self.dataset_width = preper.dataset_width

self.bins = preper.bins

self.preper = preper

User-defined attributes

self.radius_x_metres = radius_width_metres

self.radius_y_metres = radius_height_metres

self.pixel_size_metres = pixel_size_metres

self.smoothing = smoothing

self.simplification_tolerance = simplification_tolerance

self.angle = angle

self._print_to_frontend = print_to_frontend

119

def print_to_frontend(self, text: str) -> None:

"""

Prints to the frontend if the print_to_frontend attribute is not None

:param text: Text to print

"""

logger.info(text)

if self._print_to_frontend:

self._print_to_frontend(text)

def run_all(self, delete_files_when_done=True) -> None:

"""

Runs all the methods in order

:param delete_files_when_done: Whether to delete the files when done

"""

self.run_interpolation_for_each_bin()

self.run_polygonize_for_each_bin()

self.create_kml_for_each_bin()

if delete_files_when_done:

self.delete_files()

def run_interpolation_for_each_bin(

self,

radius_x_metres=None,

radius_y_metres=None,

pixel_size_metres=None, # in metres

smoothing=None,

) -> None:

"""

Runs the interpolation for each bin. If bin.ignore is True, it is skipped. When

search ellipse, the radius_x_metres and radius_y_metres are used. These are in

to degrees using the centre of the dataset as the reference point. This is

earth, which is not perfectly spherical.

This method contains run_interpolation() which is the method that actually runs

is called for each bin.

"""

def run_interpolation(

*,

120

input_shp_name: str,

target_column: str,

output_tif_name: str,

output_format: str = INTERPOLATION_OUTPUT_FORMAT,

output_type=INTERPOLATION_OUTPUT_TYPE,

dataset_width: int = 0,

dataset_height: int = 0,

z_increase=None,

z_multiply=None,

output_bounds: list = None,

algorithm: str = INTERPOLATION_ALGORITHM,

power: int = None,

smoothing: float = None,

radius: float = None,

radius_width: float = None,

radius_height: float = None,

angle: int = None,

max_points: int = None,

min_points: int = None,

max_points_per_quadrant: int = 0,

min_points_per_quadrant: int = 0,

nodata: float = None,

where: str = None,

sql: str = None,

) -> str:

"""

Runs the gdal.Grid function to interpolate a raster from a shapefile.

:param input_shp_name: The name of the shapefile to be interpolated.

:param target_column: The column in the shapefile to be interpolated.

:param output_tif_name: The name of the output tif file.

:param output_format: The format of the output file.

:param output_type: The type of the output file. Default is Byte.

:param dataset_width: The width of the output file.

:param dataset_height: The height of the output file.

:param z_increase: The amount to increase the z values by. Z values are the

:param z_multiply: The amount to multiply the z values by. Z values are the

:param output_bounds: The bounds of the output file.

:param algorithm: The algorithm to use for interpolation. Options are

:param power: The power to use for the inverse distance to a power

121

:param smoothing: The smoothing to use for the average distance algorithm.

:param radius: The radius to use for the average distance algorithm.

:param radius_width: The radius1 to use for the average distance algorithm.

:param radius_height: The radius2 to use for the average distance

:param angle: The angle to use for the average distance algorithm. This is

:param max_points: The max_points to use for the average distance algorithm.

:param min_points: The min_points to use for the average distance algorithm.

:param max_points_per_quadrant: The max_points_per_quadrant to use for the

:param min_points_per_quadrant: The min_points_per_quadrant to use for the

:param nodata: The nodata value to use for the average distance algorithm.

:param where: The where clause to use for the average distance algorithm.

:param sql: The sql to use for the average distance algorithm.

"""

def _get_output_bounds() -> list:

"""

Returns the output bounds for the gdal.Grid function. 18 decimal places

nanometres. This is unneccessarily precise, but why not? Gdal.Grid will

Gdal accepts the bounds in the order min_x, max_x, min_y, max_y.

"""

min_x, min_y, max_x, max_y = output_bounds

return [

"%.18g" % min_x,

"%.18g" % max_x,

"%.18g" % min_y,

"%.18g" % max_y,

]

def _get_algorithm_str() -> str:

"""

Returns the algorithm string for the gdal.Grid function.

"""

s = f"{algorithm}:"

s += f"power={power}:" if power else ""

s += f"smoothing={smoothing}:" if smoothing else ""

s += f"radius={radius}:" if radius else ""

s += f"radius1={radius_width}:" if radius_width else ""

s += f"radius2={radius_height}:" if radius_height else ""

s += f"angle={angle}:" if angle else ""

122

s += f"max_points={max_points}:" if max_points else ""

s += f"min_points={min_points}:" if min_points else ""

s += (

f"max_points_per_quadrant={max_points_per_quadrant}:"

if max_points_per_quadrant

else ""

)

s += (

f"min_points_per_quadrant={min_points_per_quadrant}:"

if min_points_per_quadrant

else ""

)

s += f"nodata={nodata}:" if nodata else ""

return s

new_options = []

if output_format is not None:

new_options += ["-of", output_format]

if output_type is not None:

new_options += ["-ot", output_type]

if dataset_width != 0 or dataset_height != 0:

new_options += ["-outsize", str(dataset_width), str(dataset_height)]

if output_bounds is not None:

new_options += ["-txe"] + _get_output_bounds()

if algorithm is not None:

new_options += ["-a", _get_algorithm_str()]

if target_column is not None:

new_options += ["-zfield", target_column]

if z_increase is not None:

new_options += ["-z_increase", str(z_increase)]

if z_multiply is not None:

new_options += ["-z_increase", str(z_multiply)]

if sql is not None:

new_options += ["-sql", str(sql)]

if where is not None:

new_options += ["-where", str(where)]

Create the grid options object

grid_options = gdal.GridOptions(options=new_options)

123

dest_name = str(TIF_PATH / (output_tif_name + ".tif"))

src_ds = str(BINNED_SHP_PATH / (input_shp_name + ".shp.zip"))

logger.info(

"Running interpolation on: {} \nOptions: {} \nSaving to: {}".format(

str(src_ds), str(new_options), str(dest_name)

)

)

Run the interpolation

gdal.Grid(destName=dest_name, srcDS=src_ds, options=grid_options)

return output_tif_name

If no values are passed, use the values from when Runner was initialized

radius_x_metres = radius_x_metres or self.radius_x_metres

radius_y_metres = radius_y_metres or self.radius_y_metres

pixel_size_metres = pixel_size_metres or self.pixel_size_metres

smoothing = smoothing or self.smoothing

Convert the radius from metres to degrees using centre of the dataset as

the reference point

min_x, min_y, max_x, max_y = self.geo_df.total_bounds

centre_of_geo_df = (

((max_x - min_x) / 2 + min_x),

((max_y - min_y) / 2 + min_y),

) # (longitude, latitude)

dest_coord_x is radius_x_metres metres eastwards. Point() object is

(latitude, longitude)

distance_x = geopy.distance.distance(meters=radius_x_metres)

dest_coord_x: geopy.Point = distance_x.destination(

(centre_of_geo_df[1], centre_of_geo_df[0]), bearing=90 # East

)

radius_x_degrees = dest_coord_x[1] - centre_of_geo_df[0] # longitude

dest_coord_y is radius_y_metres metres northwards. Point() object is

(latitude, longitude)

distance_y = geopy.distance.distance(meters=radius_y_metres)

124

dest_coord_y: geopy.Point = distance_y.destination(

(centre_of_geo_df[1], centre_of_geo_df[0]), bearing=0 # North

)

radius_y_degrees = dest_coord_y[0] - centre_of_geo_df[1] # latitude

Run the interpolation for each bin

for b in self.bins:

if b.ignore:

continue

msg = "\nRunning interpolation for bin: " + str(b.enum)

self.print_to_frontend(msg)

tif_file_name = run_interpolation(

input_shp_name=b.bin_shp_file_name,

target_column=b.column,

output_tif_name=b.bin_shp_file_name,

algorithm="average",

radius_width=radius_x_degrees,

radius_height=radius_y_degrees,

smoothing=smoothing,

dataset_width=int(self.dataset_width / pixel_size_metres),

dataset_height=int(self.dataset_height / pixel_size_metres),

angle=int(self.angle),

)

b.tif_file_name = tif_file_name

def run_polygonize_for_each_bin(

self,

simplification_tolerance: int = None,

) -> None:

"""

Runs the polygonization of each bin. If bin.ignore is True, it is skipped.

"""

Run polygonize for each bin

for b in self.bins:

if b.ignore:

continue

125

self.print_to_frontend("\nRunning polygonize for bin: " + str(b.enum))

output_shp_name = b.tif_file_name + "_polygons"

input_tif_path = TIF_PATH / (b.tif_file_name + ".tif")

output_shp_path = POLYGON_SHP_PATH / (output_shp_name + ".shp.zip")

gdal_polygonize(

src_filename=str(input_tif_path),

dst_filename=str(output_shp_path),

band_number=1,

dst_layername=None,

dst_fieldname=None,

mask="default",

connectedness8=False,

options=None,

quiet=True,

)

logger.info(

"Polygonized " + str(input_tif_path) + " to " + str(output_shp_path)

)

b.polygon_shp_file_name = output_shp_name

def create_kml_for_each_bin(self) -> None:

"""

Creates a kml for each bin. If the ignore of bin is True, it is skipped. The

before the kml is created. The simplification tolerance is in metres and

are simplified. This method contains the

to create the kml from a shapely Polygon or MultiPolygon.

"""

Convert the simplification tolerance from metres to degrees

x1, y1 = self.geo_df.total_bounds[0:2] # lon, lat

Get the coordinate a certain distance away. Returns a tuple of (lat, lon)

dest_coord = geopy.distance.distance(

meters=self.simplification_tolerance,

).destination(

126

(y1, x1), bearing=90 # 90 degrees is east

)

x2 = dest_coord[1] # lon

simplification_tolerance_degrees = x2 - x1

Create kml for each bin

for bin in self.bins:

if bin.ignore:

continue

self.print_to_frontend("\nMaking kml for bin: " + str(bin.enum))

Open the polygon shapefile using geopandas

polygon_shp_file_path = POLYGON_SHP_PATH / (

bin.polygon_shp_file_name + ".shp.zip"

)

polygon_df: gp.GeoDataFrame | None = None

if not os.path.exists(polygon_shp_file_path):

logger.exception("File does not exist: %s", polygon_shp_file_path)

continue

try:

polygon_df = gp.read_file(

str(polygon_shp_file_path), driver="ESRI Shapefile"

)

logger.info(

f"Opened shapefile from {polygon_shp_file_path}. "

f"Shape (rows, columns): {self.geo_df.shape}"

)

except Exception as e:

logger.error("Can’t open shapefile. %s", e)

self.print_to_frontend("A problem occurred. Please try again.")

if polygon_df is None:

self.print_to_frontend(

f"The polygon shapefile for bin {bin.enum} is empty. Skipping"

)

continue

Remove the polygons with zero values. These are not of value to the user.

polygon_df = polygon_df[polygon_df["DN"] != 0]

127

if polygon_df.empty:

msg = "\nBin {} is empty. Ignoring...".format(bin.enum)

logger.info(msg)

self.print_to_frontend(msg)

bin.ignore = True

continue

Unify and simplify the polygons

united: sp.Polygon | sp.MultiPolygon = sp.unary_union(

polygon_df["geometry"]

)

united = united.simplify(tolerance=simplification_tolerance_degrees)

def _get_kml_colour(b: "Bin") -> str:

"""

KML colour uses the format AABBGGRR, where AA is the alpha value, BB is

value, and RR is the red value. The alpha value is the opacity of the

transparent and FF is fully opaque. Values are specified in

scaled from 0-100 to 0-255 and converted to hexadecimal before being

"""

from simplekml import Color

colour_without_hash = b.colour[1:]

alpha = hex(int(b.opacity / 100 * 255))[

2:

] # first two characters are 0x

return Color.hexa(colour_without_hash + alpha)

Create the kml object and a MultiGeometry object

bin.kml_file_name = bin.polygon_shp_file_name

kml = simplekml.Kml()

multi_geometry: simplekml.MultiGeometry = kml.newmultigeometry(

name=bin.description

)

Polygon or MultiPolygon objects can be added to the MultiGeometry object

if isinstance(united, sp.Polygon):

united = multi_geometry.newpolygon(

name=bin.description,

outerboundaryis=list(united.exterior.coords),

128

)

united.style.polystyle.color = _get_kml_colour(bin)

united.style.polystyle.outline = 0

elif isinstance(united, sp.MultiPolygon):

for polygon in united.geoms:

pol = multi_geometry.newpolygon(

name=bin.description,

outerboundaryis=list(polygon.exterior.coords),

)

pol.style.polystyle.color = _get_kml_colour(bin)

pol.style.polystyle.outline = 0

else:

raise TypeError("Polygon must be a shapely Polygon or MultiPolygon")

Save the kml file

if save_directory := self.save_directory:

file_path = str(save_directory / (bin.kml_file_name + ".kml"))

else:

file_path = str(KML_PATH / (bin.kml_file_name + ".kml"))

try:

kml.save(file_path)

except Exception as e:

logger.exception("Can’t save kml file. %s", e)

self.print_to_frontend("A problem occurred. Please try again.")

logger.info("Saved kml file to " + file_path)

def delete_files(

self,

delete_binned_shp_files: bool = True,

delete_polygon_shp_files: bool = True,

delete_tif_files: bool = True,

delete_kml_files: bool = False,

) -> None:

"""

Deletes the files created by the Runner.

:param delete_binned_shp_files: If True, deletes the binned shp files

:param delete_polygon_shp_files: If True, deletes the polygon shp files

:param delete_tif_files: If True, deletes the tif files

129

:param delete_kml_files: If True, deletes the kml files

"""

Remove the temporary files

for bin in self.bins:

if bin.ignore:

continue

self.print_to_frontend(

"\nRemoving temporary files for bin: " + str(bin.enum)

)

if delete_binned_shp_files and hasattr(bin, "bin_shp_file_name"):

binned_shp_file_path = (

str(BINNED_SHP_PATH / bin.bin_shp_file_name) + ".shp.zip"

)

self._delete_file(file_path=binned_shp_file_path)

if delete_tif_files and hasattr(bin, "tif_file_name"):

tif_file_path = str(TIF_PATH / bin.tif_file_name) + ".tif"

self._delete_file(file_path=tif_file_path)

if delete_polygon_shp_files and hasattr(bin, "polygon_shp_file_name"):

polygon_shp_file_path = (

str(POLYGON_SHP_PATH / bin.polygon_shp_file_name) + ".shp.zip"

)

self._delete_file(file_path=polygon_shp_file_path)

if delete_kml_files and hasattr(bin, "kml_file_name"):

kml_file_path = str(KML_PATH / bin.kml_file_name) + ".kml"

self._delete_file(file_path=kml_file_path)

def _delete_file(self, file_path: str) -> None:

"""

Deletes the file at the given file path.

"""

if os.path.exists(file_path):

os.remove(file_path)

logger.info("Removed file: " + file_path)

else:

130

logger.info("File not found: " + file_path)

def __str__(self):

return (

f"Runner class for: {self.name}, using csv_file: "

f"{self.preper.csv_file_name}"

)

####################

/src/model/prepar.py

####################

import logging

import os

from pathlib import Path

from typing import Callable

import geopandas as gp

import pandas as pd

from .bin import Bin

from config import BINNED_SHP_PATH

from config import COLUMNS_TO_DROP

from config import CSV_PATH

from config import ELLIPSOID

from config import KML_PATH

from config import PROJECTION

from config import SHAPEFILE_DRIVER

from config import SHP_PATH

logger = logging.getLogger(__name__)

class Preper:

"""

Prepares the data for the Runner. This includes:

- Creating a shapefile from the csv if one does not exist

- Creating seperate shapefiles for each bin

- Getting the width and height of the dataset in meters

"""

131

name: str

csv_file_name: str

csv_file_path: Path

geo_df: gp.GeoDataFrame

dataset_height: float

dataset_width: float

bins: list[Bin]

_print_to_gui: Callable[[str], None]

def __init__(

self,

name,

bins: list[Bin],

save_directory: Path = None,

csv_file_name: str = None,

csv_file_path: Path = None,

print_to_view: Callable[[str], None] = None,

):

assert (

csv_file_name or csv_file_path

), "Must provide either a csv_file_name or a csv_file_path"

self.name = name

self.save_directory = save_directory or KML_PATH

self._print_to_view = print_to_view

self.csv_file_name = csv_file_name

self.csv_file_path = csv_file_path

self.geo_df = self._csv_to_shp()

self._get_geo_df_dimensions()

self.bins = bins

def print_to_view(self, text: str) -> None:

"""

Prints text to the view’s console if self._print_to_gui is not None.

"""

logger.info(text)

if print_to_view := self._print_to_view:

print_to_view(text)

132

def _get_geo_df_dimensions(self) -> None:

"""

Gets the width and height of the dataset in meters and saves them to

self.dataset_width and self.dataset_height.

"""

import geopy.distance

min_lon, min_lat, max_lon, max_lat = (

self.geo_df.total_bounds[0],

self.geo_df.total_bounds[1],

self.geo_df.total_bounds[2],

self.geo_df.total_bounds[3],

)

lower_left = geopy.point.Point(longitude=min_lon, latitude=min_lat)

upper_left = geopy.point.Point(longitude=min_lon, latitude=max_lat)

lower_right = geopy.point.Point(longitude=max_lon, latitude=min_lat)

self.dataset_width = geopy.distance.geodesic(

lower_left, lower_right, ellipsoid=ELLIPSOID

).m

self.dataset_height = geopy.distance.geodesic(

lower_left, upper_left, ellipsoid=ELLIPSOID

).m

self.print_to_view(

f"\nDataset width: {round(self.dataset_width)} m, height: "

f"{round(self.dataset_height)} m"

)

def _csv_to_shp(self) -> gp.GeoDataFrame:

"""

Creates a shapefile from a csv file with the name csv_file_name. If the

it is loaded as a geopandas.GeoDataFrame and returned. If the shapefile does

and returned. If an error occurs when trying to open an existing SHP file, a

shapefile is done by converting the csv to a pandas.DataFrame, adding a

objects, and converting the pandas.DataFrame to a geopandas.GeoDataFrame. The

saved as a shapefile.

"""

from shapely.geometry import Point

133

logger.info("Creating shapefile from csv")

self.print_to_view("Creating shapefile from csv...")

if self.csv_file_name:

self.csv_file_path = CSV_PATH / (self.csv_file_name + ".csv")

else:

Select filename from Path (e.g. "/path/to/file.csv" -> "file")

self.csv_file_name = self.csv_file_path.stem

Give shp_file_name the same name as the csv_file_name

self.shp_file_path = SHP_PATH / (self.csv_file_name + ".shp.zip")

Check if the shapefile already exists. If it does, load it and return it.

if self.shp_file_path.exists():

logger.info("Shapefile already exists. Opening...")

self.print_to_view("Shapefile already exists. Opening...")

try:

geo_df = gp.read_file(str(self.shp_file_path))

logger.info(f"Shapefile opened. Shape: {geo_df.shape}")

return geo_df

except Exception as e:

logger.error(

"Could not open geopandas.GeoDataFrame from "

+ str(self.shp_file_path)

)

logger.error(e)

self.print_to_view("Problem opening shapefile. Creating new one...")

Create a new shapefile

Create a pandas.DataFrame from the csv

try:

input_df = pd.read_csv(self.csv_file_path, sep=",", index_col=0)

logger.info(

"Opened csv from %s. Shape: %s", self.csv_file_path, input_df.shape

)

except pd.errors.ParserError:

If the csv is not separated by commas, try semicolons

input_df = pd.read_csv(self.csv_file_path, sep=";", index_col=0)

134

logger.info(

"Opened csv from %s. Shape: %s", self.csv_file_path, input_df.shape

)

except Exception as e:

logger.error("Could not open csv from %s. Error: %s", self.csv_file_path, e)

raise e

Create a geometry column with shapely.Point objects

input_df["geometry"] = input_df.apply(

lambda x: Point((float(x.lon), float(x.lat))), axis=1

)

geo_df = gp.GeoDataFrame(input_df, geometry="geometry", crs="EPSG:4326")

geo_df = geo_df.reset_index()

cols_to_drop = [col for col in COLUMNS_TO_DROP if col in geo_df.columns]

geo_df = geo_df.drop(columns=cols_to_drop)

Save the geopandas.GeoDataFrame as a shapefile

try:

geo_df.to_file(

self.shp_file_path,

driver=SHAPEFILE_DRIVER,

projection=PROJECTION,

)

self.print_to_view("\nShapefile created.")

except Exception as e:

logger.error(

"Could not save geopandas.GeoDataFrame to " + str(self.shp_file_path)

)

logger.error(e)

self.print_to_view("An error occurred. See log for details.")

return geo_df

def create_shp_for_each_bin(self) -> None:

"""

Creates a shapefile for each bin. If the ignore attribute of bin is True or it

the shapefile already exists, it is skipped.

"""

for b in self.bins:

if b.ignore:

135

logger.info("Bin {} is ignored. Skipping.".format(b.enum))

continue

shp_file_name = "{}-{}-bin_{}".format(self.name, b.column, str(b.enum))

shp_file_path = str(SHP_PATH / (shp_file_name + ".shp.zip"))

if the file exists, open it

if os.path.exists(shp_file_path):

msg = "\nShapefile for bin {} already exists. Skipping...".format(

b.enum

)

self.print_to_view(msg)

b.bin_shp_file_name = shp_file_name

return

self.print_to_view("\nCreating shapefile for bin: " + str(b.enum))

Create a new dataframe with only the rows that fall within the bin.lower

and bin.upper. Boundary type

determines whether the lower and upper bounds are inclusive or exclusive.

temp_df: gp.GeoDataFrame | None = None

if b.boundary_type == "[[": # Inclusive lower, exclusive upper

temp_df = self.geo_df[

(self.geo_df[b.column] >= b.lower)

& (self.geo_df[b.column] < b.upper)

]

elif b.boundary_type == "[]": # Inclusive lower, inclusive upper

temp_df = self.geo_df[

(self.geo_df[b.column] >= b.lower)

& (self.geo_df[b.column] <= b.upper)

]

else:

raise NotImplementedError(

"Boundary type not implemented: " + b.boundary_type

)

If the dataframe there must be no data so skip this bin

if temp_df.empty:

self.print_to_view("\nBin {} is empty. Ignoring...".format(b.enum))

b.ignore = True

136

continue

binned_shp_file_path = BINNED_SHP_PATH / (shp_file_name + ".shp.zip")

temp_df.to_file(

filename=str(binned_shp_file_path),

driver=SHAPEFILE_DRIVER,

crs=PROJECTION,

)

logger.info(f"Saved geo_df to {shp_file_path}")

b.bin_shp_file_name = shp_file_name

def delete_shp_file(self) -> None:

"""

Deletes the shapefile created by _csv_to_shp()

"""

os.remove(self.shp_file_path)

def __str__(self):

return f"Preper for {self.name}, using csv: {self.csv_file_name}"

####################

/src/model/__init__.py

####################

This file causes Python to treat the directory as a package.

####################

/tests/test_backend.py

####################

import filecmp

import logging

import os

import shutil

import sys

import unittest

from pathlib import Path

from src.model.bin import Bin

from src.model.prepar import Preper

137

from src.model.runner import Runner

from tests.context.bins_for_testing import single_bin

from tests.context.bins_for_testing import test_bins

mussel_data_folder = Path(os.path.abspath(".")) / Path("src")

sys.path.insert(0, str(mussel_data_folder))

from config import CSV_PATH, BINNED_SHP_PATH, POLYGON_SHP_PATH, TEST_PATH

from config import KML_PATH

from config import TEST_CONTEXT_PATH

from config import TEST_CSV_DIMENSIONS

from config import TEST_CSV_NAME

from config import TEST_KML_NAME

from config import TEST_POLYGON_SHP_NAME

from config import TEST_SHP_NAME

from config import TEST_TIF_NAME

from config import TIF_PATH

logging.basicConfig(

filename=str(TEST_PATH / "tests.log"),

filemode="w",

format="%(name)s - %(levelname)s - %(message)s",

level=logging.DEBUG,

)

logger = logging.getLogger(__name__)

logger.info("Starting app")

class SetupTest(unittest.TestCase):

"""

Setup and teardown for tests

"""

def setUp(self):

source_csv_path = str(TEST_CONTEXT_PATH / (TEST_CSV_NAME + ".csv"))

dest_csv_path = str(CSV_PATH / (TEST_CSV_NAME + ".csv"))

logger.info(f"Copying {source_csv_path} to {dest_csv_path}")

shutil.copy(source_csv_path, dest_csv_path)

self.copied_csv_path = dest_csv_path

138

self.assertTrue(os.path.exists(self.copied_csv_path))

def tearDown(self):

Delete copied csv file

os.remove(self.copied_csv_path)

logger.info("Remove csv path: " + self.copied_csv_path)

class TestObjectInitialization(SetupTest):

"""

Test that the models initialize correctly

"""

def test_bin_class_initializes(self):

"""

Test that the Bin class initializes

"""

bin = Bin(

enum=1,

column="value",

description="test description",

lower=0,

upper=666,

)

self.assertEqual(bin.enum, 1)

self.assertEqual(bin.column, "value")

self.assertEqual(bin.description, "test description")

self.assertEqual(bin.lower, 0)

self.assertEqual(bin.upper, 666)

Test default values

self.assertEqual(bin.boundary_type, "[[")

self.assertEqual(bin.colour, "D10000")

self.assertEqual(bin.opacity, 100)

self.assertEqual(bin.ignore, False)

def test_preper_class_initialize(self):

"""

Test that the Preper class initializes

"""

139

preper = Preper(

name="test name",

csv_file_path=CSV_PATH / str(TEST_CSV_NAME + ".csv"),

bins=test_bins,

)

self.assertEqual(preper.name, "test name")

self.assertEqual(preper.csv_file_name, TEST_CSV_NAME)

self.assertEqual(preper.bins, test_bins)

def test_runner_class_initializes(self):

"""

Test that the Runner class initializes

"""

preper = Preper(

name="test name",

csv_file_path=CSV_PATH / str(TEST_CSV_NAME + ".csv"),

bins=test_bins,

)

runner = Runner(

preper=preper,

radius_width_metres=60,

radius_height_metres=60,

pixel_size_metres=10,

smoothing=10,

)

self.assertEqual(runner.name, "test name")

self.assertEqual(runner.preper.csv_file_name, TEST_CSV_NAME)

self.assertEqual(runner.preper.bins, test_bins)

self.assertEqual(runner.preper.name, "test name")

self.assertEqual(runner.preper.geo_df.shape, TEST_CSV_DIMENSIONS)

class TestWholeProcess(SetupTest):

preper: Preper

runner: Runner

name: str

"""

Test the whole process, from csv to kml. Each Runner method is tested in turn.

140

"""

def setUp(self):

"""

Set up the test by copying the test csv file to the csv folder

and creating a Preper and Runner object

"""

super().setUp()

self.name = "test_name"

self.preper = Preper(

name=self.name,

csv_file_path=CSV_PATH / str(TEST_CSV_NAME + ".csv"),

bins=single_bin,

)

self.runner = Runner(

preper=self.preper,

radius_width_metres=60,

radius_height_metres=60,

pixel_size_metres=10,

smoothing=10,

)

def tearDown(self):

"""

Tear down the test by deleting the files created by the Preper and Runner object

"""

self.preper.delete_shp_file()

self.runner.delete_files(delete_kml_files=True)

super().tearDown()

def test_expected_shp_generated(self):

"""

Test that create_shp_for_each_bin creates the expected binned shapefile

"""

self.preper.create_shp_for_each_bin()

created_shp_name = single_bin[0].bin_shp_file_name

path_to_created_shp = str(BINNED_SHP_PATH / (created_shp_name + ".shp.zip"))

path_to_expected_shp = str(TEST_CONTEXT_PATH / (TEST_SHP_NAME + ".shp.zip"))

comparison = filecmp.cmp(

141

path_to_created_shp, path_to_expected_shp, shallow=False

)

Compare two files are roughly the same size

size_diff = abs(

os.path.getsize(path_to_created_shp) - os.path.getsize(path_to_expected_shp)

)

self.assertTrue(size_diff < 50) # 50 bytes

def test_expected_tif_generated(self):

"""

Test that run_interpolation_for_each_bin creates the expected tif file

"""

self.preper.create_shp_for_each_bin()

self.runner.run_interpolation_for_each_bin()

created_tif_name = single_bin[0].tif_file_name

path_to_created_tif = str(TIF_PATH / (created_tif_name + ".tif"))

path_to_expected_tif = str(TEST_CONTEXT_PATH / (TEST_TIF_NAME + ".tif"))

comparison = filecmp.cmp(

path_to_created_tif, path_to_expected_tif, shallow=False

)

self.assertTrue(comparison)

def test_expected_polygon_shp_generated(self):

"""

Test that run_polygonize_for_each_bin creates the expected polygon shapefile

"""

self.preper.create_shp_for_each_bin()

self.runner.run_interpolation_for_each_bin()

self.runner.run_polygonize_for_each_bin()

created_shp_name = single_bin[0].polygon_shp_file_name

path_to_created_shp = str(POLYGON_SHP_PATH / (created_shp_name + ".shp.zip"))

path_to_expected_shp = str(

TEST_CONTEXT_PATH / (TEST_POLYGON_SHP_NAME + ".shp.zip")

)

Compare two files are roughly the same size

size_diff = abs(

os.path.getsize(path_to_created_shp) - os.path.getsize(path_to_expected_shp)

)

142

self.assertTrue(size_diff < 50) # 50 bytes

def test_expected_kml_generated(self):

"""

Test that run_all creates the expected kml file

"""

self.preper.create_shp_for_each_bin()

self.runner.run_interpolation_for_each_bin()

self.runner.run_polygonize_for_each_bin()

self.runner.create_kml_for_each_bin()

created_kml_name = single_bin[0].kml_file_name

path_to_created_kml = str(KML_PATH / (created_kml_name + ".kml"))

path_to_expected_kml = str(TEST_CONTEXT_PATH / (TEST_KML_NAME + ".kml"))

Compare two files are roughly the same size

size_diff = abs(

os.path.getsize(path_to_expected_kml) - os.path.getsize(path_to_created_kml)

)

self.assertTrue(size_diff < 50) # 50 bytes

if __name__ == "__main__":

unittest.main()

####################

/tests/context/bins_for_testing.py

####################

from src.model.bin import Bin

single_bin = [

Bin(

enum=1,

column="value",

description="Test description 1",

lower=40,

upper=60,

colour="3B9C17",

opacity=50,

),

143

]

test_bins = [

Bin(

enum=1,

column="value",

description="Test description 1",

lower=0,

upper=20,

ignore=True,

),

Bin(

enum=2,

column="value",

description="Test description 2",

lower=20,

upper=40,

colour="5CFF21",

opacity=50,

),

Bin(

enum=3,

column="value",

description="Test description 3",

lower=40,

upper=60,

colour="3B9C17",

opacity=50,

),

Bin(

enum=4,

column="value",

description="Test description 4",

lower=60,

upper=80,

colour="3B9C17",

opacity=100,

),

Bin(

enum=3,

144

column="value",

description="Test description 3",

lower=80,

upper=100,

colour="3B9C17",

opacity=50,

boundary_type="[]",

),

]

####################

/tests/context/__init__.py

####################

-3cm-3cm

145

8.8 Code: Mapping Client

####################

/public/index.html

####################

<!DOCTYPE html> <!-- Defines the document type -->

<head>

<!-- Imports the Leaflet CSS stylesheet, which is used for interactive map functionalities -->

<link

rel="stylesheet"

href="https://unpkg.com/leaflet@1.6.0/dist/leaflet.css"

integrity="sha512-xwE/Az9zrjBIphAcBb3F6JVqxf46+CDLwfLMHloNu6KEQCAWi6H

cDUbeOfBIptF7tcCzusKFjFw2yuvEpDL9wQ=="

crossorigin=""

/>

<title>Mapping Client</title> <!-- Specifies the title of the document -->

</head>

<body> <!-- Contains the content of the document -->

<div id="root"></div> <!-- This is where our React application will be mounted -->

</body>

</html>

####################

/src/Client.js

####################

import React from ’react’;

// Import ’getUser’ and ’resetUserSession’ from AuthService.

// ’getUser’ retrieves the user object from the session storage,

// while ’resetUserSession’ removes the user and token data from the session storage.

import { getUser, resetUserSession } from ’./service/AuthService’;

// Import ’LeafletMap’ component which renders an interactive map using the Leaflet library.

import LeafletMap from ’./LeafletMap’;

// The client component is used to render the mapping client itself once logged in

const Client = (props) => {

// Get the user object from the session storage

const user = getUser();

// Extract the users name if the user object is not undefined

146

const name = user !== "undefined" && user ? user.name : ’’;

// Define a logoutHandler function that resets the user session and

// redirects the user to the login page.

const logoutHandler = () => {

resetUserSession();

// After resetting the session, navigate the user back to the login page

props.history.push("/login");

};

return (

// Render the greeting with the user’s name, a logout button,

// and the LeafletMap component,

// which holds our interactive map and layercontrol for the KML files

<div className="container">

<div className="header">

Hello {name}! Welcome to the mapping client.

Please choose which layers you want to see by hovering the layer control

in the top right corner of the map.

<input

type="button"

value="Logout"

onClick={logoutHandler}

className="logout-btn"

/>

</div>

<LeafletMap />

</div>

);

};

// Export the Client component

export default Client;

####################

147

/src/index.css

####################

/* Import Leaflet CSS for map */

@import url(’leaflet/dist/leaflet.css’);

/* Import Roboto Slab font with 300 and 600 weight*/

@import url(’https://fonts.googleapis.com/css2?family=Roboto+Slab:wght@300;600&display=swap’);

/* Global body styles */

body {

margin: 0;

padding: 0;

box-sizing: border-box;

font-family: ’Roboto Slab’, serif;

font-weight: 300;

-webkit-font-smoothing: antialiased;

-moz-osx-font-smoothing: grayscale;

background-color: #05447A;

}

/* Header styles */

.header {

margin: 1em 0 2em 0;

padding: 1em 0;

border-bottom: 1px solid;

border-color: #FFFFFFFF;

}

/* Container for positioning elements */

.container {

position: relative;

}

/* Welcome text styles */

.welcome-text {

font-size: x-large;

color: #FFFFFFFF;

font-weight: 600;

}

148

/* Instruction text styles */

.instruction-text {

color: #FFFFFFFF;

font-weight: 300;

}

/* Logout button styles */

.logout-btn {

font-family: ’Roboto Slab’, serif;

position: absolute;

top: 10px;

right: 0;

background-color: #0366D6;

color: #FFFFFFFF;

border: none;

padding: 8px 20px;

border-radius: 5px;

cursor: pointer;

font-size: 1em;

}

/* Logout button hover styles */

.logout-btn:hover {

font-weight: 600;

}

/* Authentication container styles */

.auth-container {

display: flex;

justify-content: center;

align-items: center;

min-height: 100vh;

background-color: #05447A;

}

/* Authentication form title styles */

.auth-container h5 {

margin-top: 0.5em;

149

margin-bottom: 0.5em;

font-size: 1.5em;

}

/* Authentication form styles */

.auth-container form {

position: relative;

max-width: 400px;

width: 100%;

padding: 15px;

border-radius: 5px;

background-color: #05447A;

box-shadow: 0 0 10px #00000019;

text-align: center;

}

/* Authentication form frame styles */

.auth-container form:after {

content: "";

display: block;

position: absolute;

top: -1px;

left: -1px;

right: -1px;

bottom: -1px;

z-index: 1;

background-color: #80B6E3;

border-radius: 25px;

}

/* Authentication form inner styles */

.auth-container .form-inner {

position: relative;

background-color: #FFFFFFFF;

padding: 1px 1px 10px;

z-index: 2;

border-radius: 25px;

}

150

/* Authentication form input and button styles */

.auth-container label,

.auth-container input[type="text"],

.auth-container input[type="password"],

.auth-container input[type="submit"],

.auth-container button {

display: block;

margin-bottom: 1em;

margin-left: auto;

margin-right: auto;

font-family: ’Roboto Slab’, serif;

font-weight: 600;

padding: 10px 20px;

}

/* Authentication form input and button hover styles */

.auth-container input[type="submit"]:hover,

.auth-container button:hover {

cursor: pointer;

opacity: 0.9;

}

/* Content styles */

.content {

margin: 2em;

font-size: 1.2em;

}

/* Message styles */

.message {

color: #0000FF;

}

/* Error message styles */

.error-message {

color: #FF0000FF;

}

151

####################

/src/index.js

####################

// Import the React library for building user interfaces

import React from "react";

// Import ReactDOM library for DOM manipulations in React

import ReactDOM from "react-dom";

// Import the CSS file for global styles

import "./index.css";

// Import the main application component

import App from "./App";

// Render the React application

// ReactDOM.render method is used to render React components to the DOM

// Here we’re rendering the App component inside a div element

// with the id "root" in the HTML file

// React.StrictMode is a wrapper component that checks for potential problems in the application

// during the development build

ReactDOM.render(

<React.StrictMode>

<App />

</React.StrictMode>,

document.getElementById("root")

);

####################

/src/LeafletMap.css

####################

.leaflet-map {

width: 100%;

height: 800px;

border-radius: 25px;

}

.leaflet-control-layers {

width: 175px;

height: 75px;

}

152

.leaflet-control-layers-expanded {

width: 175px;

height: auto;

max-height: 400px;

}

.leaflet-control-layers-list {

width: 100%;

height: 100%;

}

####################

/src/App.js

####################

// This is the main component of the application.

// It is responsible for rendering the header and the content of the application

// Import the BrowserRouter, NavLink, Route and Switch components

// from the react-router-dom library

import {BrowserRouter, Redirect, Route, Switch} from "react-router-dom";

// Import the Home, Login, Register, and Client components

import Login from "./Login";

import Register from "./Register";

import Client from "./Client";

// Import the PublicRoute and PrivateRoute components for managing access to routes

import PublicRoute from "./route/PublicRoute";

import PrivateRoute from "./route/PrivateRoute";

// Import the useState and useEffect hooks from the React library

import { useState, useEffect} from "react";

// Import the getUser, getToken, setUserSession

// and resetUserSession functions from the AuthService module

import { getUser, getToken, setUserSession, resetUserSession } from "./service/AuthService";

// Import axios to make API requests

import axios from "axios";

// Define the verify token API endpoint URL

const verifyTokenURL = process.env.REACT_APP_API_GATEWAY_VERIFY;

// Create our main App component

function App() {

153

// Create a state variable for authenticating the user

// and a function to update the state variable

const [isAuthenticating, setAuthenticating] = useState(true);

const [isLoggedIn, setIsLoggedIn] = useState(!!getToken());

// Use an effect hook to verify the user token on initial render

useEffect(() => {

// Check if the token is undefined, null or empty,

// if so return and do not make an API request

const token = getToken();

if (!token) {

setAuthenticating(false);

return;

}

// Create a requestConfig object that will be used to set the API key header

const requestConfig = {

headers: {

// The API key is stored in the .env file

"x-api-key": process.env.REACT_APP_API_KEY

}

}

// Create a RequestBody object that will contain the user data and token

// The token will be used to verify if the user is authenticated

const RequestBody = {

user: getUser(),

token: token

}

// Make a POST request to the verifyTokenURL with the RequestBody

// and requestConfig objects

// response.data contains the new token and user data (if the token is valid)

axios.post(verifyTokenURL, RequestBody, requestConfig).then(response => {

// If the token is valid, set the user session and stop authenticating

setUserSession(response.data.token, response.data.user);

setIsLoggedIn(true);

setAuthenticating(false);

}).catch(()=> {

// If the token is invalid, reset the user session and stop authenticating

resetUserSession();

setIsLoggedIn(false);

setAuthenticating(false);

154

})

}, []);

// Check if the user is authenticating and

// if the token is valid, if so render the loading message

const token = getToken();

if (isAuthenticating && token) {

return <div className={"content"}>Loading...</div>

}

// If the user is not authenticating anymore, render the application

return (

<div className={"App"}>

<BrowserRouter>

<div className={"content"}>

<Switch>

<Route exact path="/">

{isLoggedIn ? <Redirect to="/client" /> : <Redirect to="/login" />}

</Route>

<PublicRoute exact path="/login" component={props =>

<Login {...props} onLogin={() => setIsLoggedIn(true)} />} >

</PublicRoute>

<PublicRoute path="/register" component={Register} />

<PrivateRoute path="/client" component={Client} />

</Switch>

</div>

</BrowserRouter>

</div>

);

}

// Export the App component

export default App;

####################

/src/Login.js

####################

// Import React and useState hook from the React library

import React, {useState} from "react"

// Import axios for making API requests

import axios from "axios"

155

// Import setUserSession function from AuthService for managing user sessions

import { setUserSession } from "./service/AuthService"

// Import useHistory from ’react-router-dom’ for programmatic navigation

import { useHistory } from "react-router-dom"

// Define the login API endpoint URL

export const loginUrl = process.env.REACT_APP_API_GATEWAY_LOGIN;

// Create a functional Login component with ’props’ as its parameter

const Login = (props) => {

// Create a state variable for username and password with useState hooks

const [username, setUsername] = useState("");

const [password, setPassword] = useState("");

const [errorMessage, setErrorMessage] = useState(null);

const history = useHistory();

// Create a submitHandler function that will be called when the user submits the form

const submitHandler = (event) => {

// Prevent the default behavior of the form

event.preventDefault();

// Check if username or password is empty, if so set an error message and return

if (username.trim() === "" || password.trim() === "") {

setErrorMessage("Please fill in all fields");

return;

}

// If username and password are not empty, set the error message to null

setErrorMessage(null);

// Create a requestConfig object that will be used to set the API key header

const requestConfig = {

headers: {

"x-api-key": process.env.REACT_APP_API_KEY // The API key is stored in the .env file

}

}

// Create a RequestBody object that will be used to send the username and password to the API

const RequestBody = {

username: username,

password: password,

}

// Make a POST request to the login API endpoint with the RequestBody

156

// and requestConfig objects

axios.post(loginUrl, RequestBody, requestConfig).then(response => {

// If the request is successful, call the setUserSession function from AuthService

// and pass the token and user data

setUserSession(response.data.token, response.data.user);

props.onLogin();

// Redirect the user to the client page

props.history.push("/client");

}).catch(error => {

// If the request fails, check if the error is a 401 or 403 error

// and set the error message accordingly. If the error is not a 401 or 403 error,

// set the error message to "Something went wrong. Please try again later."

if (error.response.status === 401 || error.response.status === 403) {

setErrorMessage(error.response.data.message);

} else {

setErrorMessage("Something went wrong. Please try again later.");

}

})

}

// handleRegisterButtonClick function navigates to the Register page

// and passes the current username value as state

const handleRegisterButtonClick = () => {

history.push({

pathname: "/register",

state: { username: username }

});

}

// Return the login form with our state variables and submitHandler function

return (

<div className={"auth-container"}>

<form onSubmit={submitHandler}>

<div className={"form-inner"}>

<h5>Login</h5>

Username: <input type="text" value={username}

onChange={event => setUsername(event.target.value)}/>

Password: <input type="password" value={password}

onChange={event => setPassword(event.target.value)}/>

<input type="submit" value="Login" />

157

<button onClick={handleRegisterButtonClick}>Register</button>

{errorMessage && <p className="error-message">{errorMessage}</p>}

</div>

</form>

</div>

)

}

// Export the Login component

export default Login;

####################

/src/LeafletMap.js

####################

// Import necessary libraries and styles

import React, { Component } from ’react’;

import L from ’leaflet’;

import ’leaflet-kml’;

import ’leaflet/dist/leaflet.css’;

import ’./LeafletMap.css’;

import axios from ’axios’; // Import Axios for making HTTP requests

// Define the LeafletMap component

class LeafletMap extends Component {

// When the component is mounted

componentDidMount() {

// Initialize the map with OpenStreetMap as the base layer

this.map = L.map(’map’, {

layers: [

L.tileLayer(’https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png’, {

attribution: ’©

OpenStreetMap contributors’,

}),

],

});

const baseMaps = {}; // Object to hold base layers

const overlayMaps = {};

// Function to load all KML files and add them to the map

158

const loadKmlFiles = async () => {

// Fetch the list of KML files from the API using Axios

// The request is made to the API endpoint stored in the .env file

// and passes an API key as a header

const response = await axios.get

(‘${process.env.REACT_APP_API_GATEWAY_PRESIGNEDURL}‘, {

headers: {

// The API key is stored in the .env file

’x-api-key’: process.env.REACT_APP_API_KEY_2,

}

});

const files = response.data;

// For each file returned from the HTTP request, create a new layer group,

// add it to the overlayMaps object,

// and start loading the KML file into it

// This creates an array of promises for each KML file that is being loaded

const promises = files.map(({ file, url: signedUrl }) => {

const layerGroup = L.layerGroup();

overlayMaps[file] = layerGroup;

return this.loadKML(signedUrl, layerGroup);

});

// Wait for all the KML files to be loaded before adding the layers to the map

await Promise.all(promises);

L.control.layers(baseMaps, overlayMaps).addTo(this.map);

L.control.scale({ position: ’bottomleft’ }).addTo(this.map);

};

// Call the loadKmlFiles function to start the process of loading the KML files

loadKmlFiles();

}

// When the component is about to be unmounted

componentWillUnmount() {

// Remove the map from the DOM

this.map.remove();

}

159

// Fetch and parse KML file, then add it to the map as a layer

loadKML = async (signedUrl, layerGroup) => {

// Fetch the KML content using the signed URL with Axios

// ’signedUrl’ contains the presigned URLs that was returned by the HTTP request,

// and it gives us access to the KML file in the S3 bucket

const kmlResponse = await axios.get(signedUrl);

const kmlText = kmlResponse.data;

// Parse the KML content using a DOMParser, which turns the KML text into a DOM Document,

// that we can read and manipulate

const parser = new DOMParser();

const kml = parser.parseFromString(kmlText, ’application/xml’);

// Use the ’leaflet-kml’ library to convert the KML Document into a Leaflet layer

const track = new L.KML(kml);

// Add the KML layer to the map

layerGroup.addLayer(track);

this.map.addLayer(layerGroup);

this.map.fitBounds(track.getBounds());

};

// Render the map container

render() {

return <div id="map" className="leaflet-map"></div>;

}

}

// Export the LeafletMap component

export default LeafletMap;

####################

/src/Register.js

####################

// Import React and useState hook from the React library

import React, {useState, useEffect} from "react";

// Import axios for making API requests

import axios from "axios";

// Import useHistory from ’react-router-dom’ for programmatic navigation

import { useHistory } from "react-router-dom";

160

// Import validation functions from the ValidationChecks module

import { passwordsMatch, isValidPassword, isValidUsername, isValidEmail, isValidName}

from "./service/ValidationService";

// Define the register API endpoint URL

export const registerUrl = process.env.REACT_APP_API_GATEWAY_REGISTER;

// Create a Register component

const Register = (props) => {

// Create state variables for the form fields with useState hooks

const [name, setName] = useState("");

const [email, setEmail] = useState("");

const [username, setUsername] = useState(props.location.state?.username || "");

const [password, setPassword] = useState("");

const [repeatPassword, setRepeatPassword] = useState("");

const [showPassword, setShowPassword] = useState(false);

const [showRepeatPassword, setShowRepeatPassword] = useState(false);

const [message, setMessage] = useState(null);

const [errorMessage, setErrorMessage] = useState(null);

const history = useHistory();

useEffect(() => {

// If the username was passed from another component, update the username state

if (props.location.state) {

setUsername(props.location.state.username);

}

}, [props.location.state]);

// Create a submitHandler function that will be called when the user submits the form

// The function includes validations to ensure the entered credentials

// are as per the required criteria

const submitHandler = (event) => {

// Prevent the default behavior of the form

event.preventDefault();

// Validation of the users entered name, email, username and password

161

if (!passwordsMatch(password, repeatPassword)) {

setErrorMessage("Passwords do not match.");

return;

}

if (!isValidName(name)) {

setErrorMessage("Please enter a valid name with at least 2 characters.");

return;

}

if (!isValidEmail(email)) {

setErrorMessage("Please enter a valid email address.");

return;

}

if (!isValidUsername(username)) {

setErrorMessage("Please enter a valid username with at least 4 characters.");

return;

}

if (!isValidPassword(password)) {

setErrorMessage("Please enter a valid password with at least eight characters,

one uppercase letter, one lowercase letter, one special characters and one number");

return;

}

setErrorMessage(null);

// Create a requestConfig object that will be used to set the API key header

const requestConfig = {

headers: {

// The API key is stored in the .env file

"x-api-key": process.env.REACT_APP_API_KEY

}

}

// Create a RequestBody object that will be used to send the name,

// username, email and password to the API

const RequestBody = {

name: name,

162

username: username,

email: email,

password: password,

}

// Make a POST request to the register API endpoint with the RequestBody

// and requestConfig objects

axios.post(registerUrl, RequestBody, requestConfig).then(response => {

// If the request is successful, set the message to "Successfully registered"

setMessage("Successfully registered");

}).catch(error => {

// If the request fails, check if the error is a 401 or 403 error

// and set the error message accordingly

if (error.response.status === 401 || error.response.status === 403) {

setErrorMessage(error.response.data.message);

} else {

setErrorMessage("Something went wrong. Please try again later.");

}

})

}

const handleReturnButtonClick = () => {

history.push("/login");

};

// Toggle the visibility of the password in the password input field

const toggleShowPassword = () => {

setShowPassword(!showPassword);

};

// Toggle the visibility of the repeated password in the repeatPassword input field

const toggleShowRepeatPassword = () => {

setShowRepeatPassword(!showRepeatPassword);

};

// Return the form

return (

<div className={"auth-container"}>

<form onSubmit={submitHandler}>

<div className={"form-inner"}>

<h5>Register</h5>

Name: <input type="text" value={name}

onChange={event => setName(event.target.value)}/>

E-mail: <input type="text" value={email}

163

onChange={event => setEmail(event.target.value)}/>

Username: <input type="text" value={username}

onChange={event => setUsername(event.target.value)}/>

Password:

<input

type={showPassword ? "text" : "password"}

value={password}

onChange={event => setPassword(event.target.value)}

/>

<button type="button" onClick={toggleShowPassword}>

{showPassword ? "Hide" : "Show"}</button>

Repeat Password:

<input

type={showRepeatPassword ? "text" : "password"}

value={repeatPassword}

onChange={event => setRepeatPassword(event.target.value)}

/>

<button type="button" onClick={toggleShowRepeatPassword}>

{showRepeatPassword ? "Hide" : "Show"}</button>

<input type="submit" value="Register" />

<button onClick={handleReturnButtonClick}>Return to login</button>

{message && <p className="message">{message}</p>}

{errorMessage && <p className="error-message">{errorMessage}</p>}

</div>

</form>

</div>

)

}

// Export the Register component

export default Register;

####################

/src/route/PublicRoute.js

####################

// Import React, Redirect and Route components from the react-router-dom library

import React from "react";

import { Redirect, Route } from "react-router-dom";

// Import getToken function from the AuthService module to check for the user’s token

import { getToken } from "../service/AuthService";

164

// Define a PublicRoute component

// The PublicRoute component takes in a component and other properties (denoted by ’...rest’)

const PublicRoute = ({ component: Component, ...rest }) => {

// Return a Route component

return (

<Route

{...rest}

// Render function decides what to render based on the user’s token

// If the user does not have a token (i.e., is not authenticated),

// render the requested Component

// If the user has a token (i.e., is authenticated),

// redirect the user to the "/client" route

render={props => {

// Check if the user does not have a token (i.e., the user is not logged in)

return !getToken() ? (

// If the user does not have a token, render the Component

// (i.e., the public route)

<Component {...props} />

) : (

// If the user has a token (i.e., the user is logged in),

// redirect the user to the "/client" route

<Redirect to={{ pathname: "/client" }} />

);

}}

/>

);

};

// Export the PublicRoute component

export default PublicRoute;

####################

/src/route/PrivateRoute.js

####################

// Import React, Redirect and Route components from the react-router-dom library

import React from "react";

import { Redirect, Route } from "react-router-dom";

165

// Import getToken function from the AuthService module to check for the user’s token

import { getToken } from "../service/AuthService";

// Define a PrivateRoute component

// The PrivateRoute component takes in a component and other properties (denoted by ’...rest’)

const PrivateRoute = ({ component: Component, ...rest }) => {

// Return a Route component

return (

<Route

{...rest}

// Render function decides what to render based on the user’s token

// If the user has a token (i.e., is authenticated), render the requested Component

// If the user does not have a token, redirect the user to the "/login" route

render={props => {

// Check if the user has a token

return getToken() ? (

// If the user has a token, render the Component (i.e., the private route)

<Component {...props} />

) : (

// If the user does not have a token (i.e., the user is not logged in),

// redirect the user to the "/login" route

<Redirect to={{ pathname: "/login" }} />

);

}}

/>

)

}

// Export the PrivateRoute component

export default PrivateRoute;

####################

/src/service/ValidationService.js

####################

// Function for checking if the passwords match

const passwordsMatch = (password, repeatPassword) => {

return password === repeatPassword;

};

166

// Function for checking if the name is valid based on a minimum length

const isValidName = (name) => {

const minLength = 2;

return name && name.length >= minLength;

};

// Function for checking if the email is valid based on a regular expression

const isValidEmail = (email) => {

const regex = /^[a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/;

return email && regex.test(email);

};

// Function for checking if the username is valid based on a minimum length

const isValidUsername = (username) => {

const minLength = 4;

return username && username.length >= minLength;

};

// Function for checking if the password is valid based on a minimum length

// and a regular expression

const isValidPassword = (password) => {

const minLength = 8;

const regex = /^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[@$!%*?&_-])[A-Za-z\d@$!%*?&_-]{8,}$/;

return password && password.length >= minLength && regex.test(password);

};

// Export the functions

module.exports = {

passwordsMatch,

isValidName,

isValidEmail,

isValidUsername,

isValidPassword

}

####################

/src/service/AuthService.js

####################

// This module contains functions for managing the user session.

167

// The functions are used to get the user data and token from the session storage,

// set the user session and reset the user session.

// Import the sessionStorage object from the browser

module.exports = {

// Retrieve the user object from sessionStorage

// If the user object is empty, return null

// If the user object is not empty, parse the JSON string and

// return the user object as a JavaScript object

getUser: function() {

const user = sessionStorage.getItem("user");

if (!user) {

return null;

} else {

return JSON.parse(user);

}

},

// Retrieve the authentication token for the current user session from sessionStorage

getToken: function() {

return sessionStorage.getItem("token");

},

// Set the user session in sessionStorage by storing the authentication token

// and user object

// The user object is stored as a JSON string

setUserSession: function(token, user) {

sessionStorage.setItem("token", token);

sessionStorage.setItem("user", JSON.stringify(user));

},

// Reset the user session by removing the authentication token

// and user object from sessionStorage

resetUserSession: function() {

sessionStorage.removeItem("token");

sessionStorage.removeItem("user");

}

}

####################

/test/regsiterApi.test.js

168

####################

import axios from "axios";

import AxiosMockAdapter from "axios-mock-adapter";

import { expect } from "chai";

import { registerUrl } from "../src/Register";

import { loginUrl } from "../src/Login";

// Create a new instance of AxiosMockAdapter to intercept and mock axios requests

const mock = new AxiosMockAdapter(axios);

// Define a valid user object to be used in tests

const validUser = {

name: "John Doe",

email: "john@example.com",

username: "johndoe",

password: "Password123!",

};

// Define an invalid user object by spreading the valid user object

// and changing the email and password

const invalidUser = {

...validUser,

email: "john@example",

password: "Pass123",

};

// Main describe block for API tests

describe("API", () => {

// Reset the mock adapter after each test to ensure no interference between tests

afterEach(() => {

mock.reset();

});

// Registration tests

describe("Registration", () => {

// Test for successful registration with valid data

it("should successfully register with valid data", async () => {

// Mock a successful registration response when the registerUrl

// endpoint is called with validUser data

169

mock.onPost(registerUrl, validUser).reply(200);

// Make the actual API call and store the response

const response = await axios.post(registerUrl, validUser);

// Check if the response status is 200 (success)

expect(response.status).to.equal(200);

});

// Test for failed registration with invalid data

it("should fail registration with invalid data", async () => {

// Mock a failed registration response when the registerUrl

// endpoint is called with invalidUser data

mock.onPost(registerUrl, invalidUser).reply(400);

// Try making the actual API call with invalid data and catch the error

try {

await axios.post(registerUrl, invalidUser);

} catch (error) {

// Check if the error response status is 400 (bad request)

expect(error.response.status).to.equal(400);

}

});

});

// Login tests

describe("Login", () => {

// Test for successful login with correct credentials

it("should successfully login with correct credentials", async () => {

// Mock a successful login response when the loginUrl endpoint

// is called with validUser’s username and password

mock.onPost(loginUrl, { username: validUser.username,

password: validUser.password }).reply(200);

// Make the actual API call with correct credentials and store the response

const response = await axios.post(loginUrl, { username: validUser.username,

password: validUser.password });

// Check if the response status is 200 (success)

170

expect(response.status).to.equal(200);

});

// Test for failed login with incorrect credentials

it("should fail login with incorrect credentials", async () => {

// Mock a failed login response when the loginUrl endpoint

// is called with validUser’s username and wrong password

mock.onPost(loginUrl, { username: validUser.username,

password: "wrongpassword" }).reply(401);

// Try making the actual API call with incorrect credentials and catch the error

try {

await axios.post(loginUrl, { username: validUser.username,

password: "wrongpassword" });

} catch (error) {

// Check if the error response status is 401 (unauthorized)

expect(error.response.status).to.equal(401);

}

});

});

});

####################

/test/registerValidation.test.js

####################

import { expect } from "chai";

import {isValidName, isValidEmail, isValidUsername, isValidPassword, passwordsMatch}

from "../src/service/ValidationService";

// Tests for the validation functions used during registration

describe("Validation functions", () => {

// Tests for the name validation function

describe("Name validation", () => {

// Check if the function returns true for valid names

it("should return true for valid names", () => {

expect(isValidName("John Doe")).to.be.true;

});

171

// Check if the function returns false for invalid names

it("should return false for invalid names", () => {

expect(isValidName("J")).to.be.false;

});

});

// Tests for the email validation function

describe("Email validation", () => {

// Check if the function returns true for valid email addresses

it("should return true for valid email addresses", () => {

expect(isValidEmail("example@example.com")).to.be.true;

});

// Check if the function returns false for invalid email addresses

it("should return false for invalid email addresses", () => {

expect(isValidEmail("example@example")).to.be.false;

});

});

// Tests for the username validation function

describe("Username validation", () => {

// Check if the function returns true for valid usernames

it("should return true for valid usernames", () => {

expect(isValidUsername("username")).to.be.true;

});

// Check if the function returns false for invalid usernames

it("should return false for invalid usernames", () => {

expect(isValidUsername("usr")).to.be.false;

});

});

// Tests for the password validation function

describe("Password validation", () => {

// Check if the function returns true for valid passwords

172

it("should return true for valid passwords", () => {

expect(isValidPassword("Password123!")).to.be.true;

});

// Check if the function returns false for various types of invalid passwords

it("should return false for invalid passwords", () => {

expect(isValidPassword("Pass123")).to.be.false;

expect(isValidPassword("password")).to.be.false;

expect(isValidPassword("PASSWORD")).to.be.false;

expect(isValidPassword("Password")).to.be.false;

expect(isValidPassword("Password123")).to.be.false;

expect(isValidPassword("Password!")).to.be.false;

});

});

// Tests for the password match validation function

describe("Password match validation", () => {

// Check if the function returns true for matching passwords

it("should return true for matching passwords", () => {

expect(passwordsMatch("Password123!", "Password123!")).to.be.true;

});

// Check if the function returns false for non-matching passwords

it("should return false for non-matching passwords", () => {

expect(passwordsMatch("Password123!", "Password123")).to.be.false;

});

});

});

-3cm-3cm

173

8.9 Code: Lambda Functions for Authentication

####################

/index.js

####################

// Import the required services and utility functions

const registerService = require(’./service/register’);

const loginService = require(’./service/login’);

const verifyService = require(’./service/verify’);

const util = require(’./utils/util’)

// Define the API paths

const healthPath = ’/health’;

const registerPath = ’/register’;

const loginPath = ’/login’;

const verifyPath = ’/verify’;

// Main Lambda function handler

exports.handler = async(event) => {

// Log the incoming request event

console.log(’Request Event: ’, event);

let response;

// Determine which service to call based on the HTTP method and path

switch(true) {

// Health check endpoint

case event.httpMethod === ’GET’ && event.path === healthPath:

response = util.buildResponse(200);

break;

// User registration endpoint

case event.httpMethod === ’POST’ && event.path === registerPath:

const registerBody = JSON.parse(event.body);

response = await registerService.register(registerBody);

break;

// User login endpoint

case event.httpMethod === ’POST’ && event.path === loginPath:

const loginBody = JSON.parse(event.body);

174

response = loginService.login(loginBody);

break;

// Token verification endpoint

case event.httpMethod === ’POST’ && event.path === verifyPath:

const verifyBody = JSON.parse(event.body);

response = verifyService.verify(verifyBody);

break;

// Default case for unknown paths

default:

response = util.buildResponse(404, ’404 Not found’);

}

// Return the appropriate response

return response

};

####################

/service/login.js

####################

// Import AWS SDK and configure the region

const AWS = require(’aws-sdk’);

AWS.config.update({

region: ’eu-north-1’

});

// Import utility functions, bcrypt for password comparison, and auth for generating tokens

const util = require(’../utils/util’);

const bcrypt = require(’bcryptjs’);

const auth = require(’../utils/auth’);

// Import DocumentClient for DynamoDB

const { DocumentClient } = require(’aws-sdk/clients/dynamodb’);

const dynamodb = new DocumentClient();

// Define the DynamoDB table name

const userTable = ’mapclient-users’;

175

// Main function to log in a user

async function login(user) {

const username = user.username;

const password = user.password;

// Validate the input fields

if (!user || !username || !password) {

return util.buildResponse(401, {

message: ’Username and password are required’

});

}

// Get the user from the database using their username

const dynamoUser = await getUser(username.toLowerCase().trim());

if (!dynamoUser || !dynamoUser.username) {

return util.buildResponse(403, { message: ’Username or password is wrong’ });

}

// Compare the provided password with the stored hashed password

if (!bcrypt.compareSync(password, dynamoUser.password)) {

return util.buildResponse(403, { message: ’Username or password is wrong’ });

}

// Create a userInfo object and generate a token for the authenticated user

const userInfo = {

username: dynamoUser.username,

name: dynamoUser.name

};

const token = auth.generateToken(userInfo);

// Construct a response object with the userInfo and token

const response = {

user: userInfo,

token: token

};

// Return a success response with the userInfo and token

return util.buildResponse(200, response);

}

176

// Function to get a user by username from the database

async function getUser(username) {

const params = {

TableName: userTable,

Key: {

username: username

}

};

// Query the database for the user and return the result

return await dynamodb.get(params).promise().then(response => {

return response.Item;

}, error => {

console.error(’There is an error getting user: ’, error);

});

}

// Export the login function

module.exports.login = login;

####################

/service/register.js

####################

// Import AWS SDK and configure the region

const AWS = require(’aws-sdk’);

AWS.config.update({

region: ’eu-north-1’

});

// Import utility functions and bcrypt for password hashing

const util = require(’../utils/util’);

const bcrypt = require(’bcryptjs’);

// Import DocumentClient for DynamoDB

const { DocumentClient } = require(’aws-sdk/clients/dynamodb’);

const dynamodb = new DocumentClient();

// Define the DynamoDB table name

177

const userTable = ’mapclient-users’;

// Main function to register a new user

async function register(userInfo) {

// Extract user information from the input

const name = userInfo.name;

const email = userInfo.email;

const username = userInfo.username;

const password = userInfo.password;

// Validate the input fields

if (!username || !name || !email || !password) {

return util.buildResponse(401, {

message: ’All fields are required’

})

}

// Check if the username is already taken

const dynamoUser = await getUser(username);

if (dynamoUser && dynamoUser.username) {

return util.buildResponse(401, {

message: ’Username is already taken. Please choose a different one.’

})

}

// Check if the email is already taken

const dynamoEmail = await getEmail(email);

if (dynamoEmail && dynamoEmail.email) {

return util.buildResponse(401, {

message: ’Email is already taken. Please choose a different one.’

})

}

// Hash the user’s password

const hashedPW = bcrypt.hashSync(password.trim(), 10);

// Create a user object with the input data

const user = {

name: name,

178

email: email,

username: username.toLowerCase().trim(),

password: hashedPW

}

// Save the new user to the database

const saveUserResponse = await saveUser(user);

if (!saveUserResponse) {

return util.buildResponse(503, {

message: ’Server Error. Please try again later.’

});

}

// Return success response with the registered username

return util.buildResponse(200, {username: username});

}

// Function to get a user by username

async function getUser(username) {

const params = {

TableName: userTable,

Key: {

username: username

}

}

// Query the database for the user and return the result

return await dynamodb.get(params).promise().then(response => {

return response.Item;

}, error => {

console.error(’There is an error getting user: ’, error);

})

}

// Function to get a user by email

async function getEmail(email) {

const params = {

TableName: userTable,

FilterExpression: "#email = :email",

179

ExpressionAttributeNames: {

"#email": "email"

},

ExpressionAttributeValues: {

":email": email

}

};

// Scan the database for the user with the given email and return the result

const queryOutput = await dynamodb.scan(params).promise();

if (queryOutput.Items && queryOutput.Items.length > 0) {

return queryOutput.Items[0];

} else {

return null;

}

}

// Function to save a new user to the database

async function saveUser(user) {

const params = {

TableName: userTable,

Item: user

}

// Add the user to the database and return the result

return await dynamodb.put(params).promise().then(() => {

return true;

}, error => {

console.error(’There is an error saving user: ’, error)

});

}

module.exports.register = register;

####################

/service/verify.js

####################

// Import utility functions and auth for verifying tokens

180

const util = require(’../utils/util’);

const auth = require(’../utils/auth’);

// Main function to verify a user’s token

function verify(requestBody) {

// Validate the input fields

if (!requestBody.user || !requestBody.user.username || !requestBody.token) {

return util.buildResponse(401, {

verified: false,

message: "Incorrect request body"

});

}

// Extract user and token from the request body

const user = requestBody.user;

const token = requestBody.token;

// Verify the token using the auth.verifyToken function

const verification = auth.verifyToken(user.username, token);

// If the token is not verified, return an error response

if (!verification.verified) {

return util.buildResponse(401, verification);

}

// If the token is verified, return a success response with the user and token

return util.buildResponse(200, {

verified: true,

message: "Verified",

user: user,

token: token

});

}

// Export the verify function

module.exports.verify = verify;

####################

/utils/auth.js

181

####################

// Import JSON Web Token (JWT) library

const jwt = require(’jsonwebtoken’);

// Function to generate a JWT token for the user

function generateToken(userInfo) {

// If userInfo is empty, return null

if (!userInfo) {

return null;

}

// Sign the userInfo with the JWT secret and set the expiration to 1 hour

return jwt.sign(userInfo, process.env.JWT_SECRET, {

expiresIn: "1h"

});

}

// Function to verify a JWT token

function verifyToken(username, token) {

// Verify the token with the JWT secret

return jwt.verify(token, process.env.JWT_SECRET, (error, response) => {

// If there’s an error, return an invalid token response

if (error) {

return {

verified: false,

message: "Invalid token"

};

}

// If the response’s username does not match the given username,

// return an invalid user response

if (response.username !== username) {

return {

verified: false,

message: "Invalid user"

};

}

// If the token is valid, return a verified response

return {

182

verified: true,

message: "Verified"

};

});

}

// Export the generateToken and verifyToken functions

module.exports.generateToken = generateToken;

module.exports.verifyToken = verifyToken;

####################

/utils/util.js

####################

// Function to build a response object for API Gateway with the given statusCode and body

function buildResponse(statusCode, body) {

return {

// Set the HTTP status code of the response

statusCode: statusCode,

// Set response headers for CORS and content type

headers: {

// Allow cross-origin resource sharing (CORS) with any domain

’Access-Control-Allow-Origin’: ’*’,

// Set the content type of the response to JSON

’Content-Type’: ’application/json’

},

// Convert the response body to a JSON string

body: JSON.stringify(body)

}

}

// Export the buildResponse function

module.exports.buildResponse = buildResponse;

-3cm-3cm

183

8.10 Code: Lambda Function for generating presigned URLs

####################

/index.js

####################

// Import the AWS SDK and create an S3 client.

const AWS = require(’aws-sdk’);

const s3 = new AWS.S3({

region: ’eu-north-1’, // Our bucket’s region

});

// The main Lambda handler function.

exports.handler = async (event) => {

// Set parameters for listing the objects in the bucket.

const params = {

Bucket: ’kml-data-bucket’, // Name of our bucket

};

try {

// List all objects in the bucket.

const data = await s3.listObjectsV2(params).promise();

// Extract the filenames from the list of objects.

const files = data.Contents.map((object) => object.Key);

// Generate pre-signed URLs for each file.

const urls = await Promise.all(files.map(async (file) => {

const params = {

Bucket: ’kml-data-bucket’,

Key: file,

Expires: 10,

};

const url = await s3.getSignedUrlPromise(’getObject’, params);

return { file, url };

}));

// Return the filenames and URLs in the response body.

return {

184

statusCode: 200,

headers: {

"Access-Control-Allow-Origin": "*",

"Content-Type": "application/json"

},

body: JSON.stringify(urls),

};

} catch (err) {

// Log any errors that occur during object listing.

console.log(err);

// Return a 500 error response if object listing fails.

return {

statusCode: 500,

body: ’Failed to list objects in bucket’,

};

}

};

-3cm-3cm

185

	Introduction
	SeaVis
	Mussels
	Drawbacks of Existing Solutions
	Requirements From SeaVis
	Our Requirements
	Summary of Content

	KML Creator
	Spatial Interpolation
	Polygonisation
	Simplification and Polygon Unification
	Model-View-Presenter
	Model: from CSV to KML
	Presenter
	View
	Extra Features

	Mapping Client
	Interface
	Authentication
	File Fetching

	Tools and Third-Party Packages
	KML Creator
	Mapping Client
	TimeZero

	Testing
	TimeZero Mapping Client
	KML Creator
	Standalone Mapping Client
	Product Testing
	Challenges of Using Fabricated Data

	Project Development and Discussion
	Interpolation Algorithm
	Electron
	Difficulties of Using PyInstaller
	Third-party Tools and Libraries
	Dual Applications: Data Formatting and Mapping Client
	Workload Distribution and Organisation
	Requirements
	Future Directions

	Conclusion
	Appendix
	Nomenclature
	PyInstaller Command
	KML Creator File Structure
	Sample KML
	Mapping Client File Structure
	Interview with Bjørn from SeaVis
	Code: KML Creator
	Code: Mapping Client
	Code: Lambda Functions for Authentication
	Code: Lambda Function for generating presigned URLs

